Solar-terrestrial physics : principles and theoretical foundations : based upon the proceedings of the theory institute held at Boston College, August 9-26, 1982

Author(s)
Bibliographic Information

Solar-terrestrial physics : principles and theoretical foundations : based upon the proceedings of the theory institute held at Boston College, August 9-26, 1982

edited by R. L. Carovillano and J. M. Forbes

(Astrophysics and space science library, v. 104)

D. Reidel , Sold and distributed in the U.S.A. and Canada by Kluwer Academic Publishers, c1983

Search this Book/Journal
Note

Based on papers presented at the Theory Institute in Solar-Terrestrial Physics

Includes bibliographies and index

Description and Table of Contents

Description

The Theory Institute in Solar-Terrestrial Physics was held at Boston College 19-26 August 1982. The program consisted of a two-week School followed by the first theory conference in the field. This book is based upon the lectures presented at the School. Several years ago there was a convergence of efforts to promote the role of theory in space plasma physics. Reports from the National Academy of Sciences and NASA advisory committees documented the disciplinary maturity of solar-terrestrial physics and recommended that theorists play a greater role in the continued development of the field. The so-called theory program in solar-terrestrial physics was established by NASA in 1979 and implemented in accordance with the guidelines set forth by a panel of scientists, primarily theorists, in the field. The same panel motivated the Boston College program. Published proceedings of the school would provide curricular materials for the training of graduate students in solar-terrestrial physics. J.M. Forbes, T.E. Holzer, A.J. Hundhausen, A.D. Richmond, and G.L. Siscoe were the principal architects of the curriculum of the School, and I am grateful for their contributions. Each also lectured at the School. The chapters in this book were prepared by the authors themselves with one exception. The chapters by Parker are edited reproductions of his lectures. Unfortunately, it is our loss that the lectures of Holzer and Hundhausen are not included in the book.

Table of Contents

The Solar-Terrestrial System.- Solar System Magnetohydrodynamics: Concepts and Basic Equations.- Solar System Magnetohydrodynamics.- I. The Macroscopic Equations of Plasma.- From Particles to Fluids.- Phase Space Density.- The Continuity Equation in Phase Space.- The Boltzmann Equation.- Liouville's Theorem.- Forming the Macroscopic Variables.- Derivation of the Macroscopic Equations.- The Field Equations.- The Conservation Equations.- Inclusion of Neutral Particle Interactions.- The Prognostic Equation for Scalar Pressure.- Temperature and Related Concepts.- Return to the Prognostic Equation for Scalar Pressure.- Adiabatic, Isentropic, and Polytropic Flows.- The Bernoulli Equation.- Divergence of the Anisotropic Pressure Tensor.- Single Particle Drifts and the Euler Equation.- Limitations to the Use of the Macroscopic Equations.- II. The Hydromagnetic Approximation and Its Consequences.- The Generalized Ohm's Law.- Charge Neutrality and Related Approximations.- Poynting's Theorem in the Hydromagnetic Limit.- Equipotential Fieldlines and Streamlines in Steady-State Hydromagnetic Flows.- Freezing Laws.- Thawing of Magnetic Flux.- The Generalized Vorticity Theorem.- The MHD Helmholtz Equation.- The Double Adiabatic Invariants.- III. MHD Waves and Discontinuities.- Linearized Plane Waves in an Isotropic Magnetized Plasma.- MHD Discontinuities.- Shock Waves 1: Ordinary (non-MHD) Shock Waves.- Shock Waves 2: Parallel Shocks.- Shock Waves 3: Perpendicular Shocks.- Shock Waves 4: Oblique Intermediate Mode Shocks.- Shock Waves 5: Oblique Fast and Slow Mode Shocks.- IV. MHD Instabilities.- The Firehose and Mirror Instabilities.- The Kelvin-Helmholtz Instability.- The Magnetospheric Interchange Instability.- Solar and Interplanetary Physics.- Generation of Solar Magnetic Fields.- Theories of Magnetic Field Origins.- Induction Equations.- Short-Sudden Approximation.- Cyclonic Convection.- Induction in the Earth.- Other Dynamo Effects.- Magnetic Field of the Sun.- Heating Of the Outer Solar Atmosphere.- The Solar Magnetic Field.- Heating of the Corona.- Model for Magnetic Merging.- Idealized Problem.- Application to the Sun.- Alternative Mechanisms.- Conclusion.- Hydromagnetic Waves in the Interplanetary Medium.- Equations of Magnetohydrodynamics.- An Exact Solution - Alfvenic Fluctuations.- Classification of Wave Modes - Simple Waves.- Geometrical Hydromagnetics.- Alfven Wave Pressure.- Hydromagnetic Turbulence in the Interplanetary Medium.- Some Comments on the Theory of Fluid Turbulence.- Rugged Invariants of Hydromagnetic Turbulence.- Observed Alfvenic Fluctuations - Waves or Turbulence?.- Collisionless Processes in the Interplanetary Medium.- General Remarks on the Collisionless Kinetic Theory.- Evolution of Velocity Distributions in Solar Wind Flow.- Collisionless Waves, Damping, and Instability.- Solar Cosmic Rays - Their Injection, Acceleration, and Propagation.- Solar Flare Observations.- The Injection.- The Acceleration.- The Propagation.- Solar Modulation of Galactic Cosmic Rays.- Solar-Cycle Variations.- The Basic Idea.- The Modulation Equations.- Energy Loss.- Solving the Modulation Equations.- Some Illustrative Examples.- The Acceleration of Energetic Particles in the Solar Wind.- Statistical Acceleration.- Shock Acceleration.- The Anomalous Component.- Magnetospheric Physics.- Large-Scale Morphology of the Magnetosphere.- Magnetic Field Structures.- Plasma Structures.- Low-Altitude Structures.- Magnetic Field Line Merging: Basic Concepts.- Solar-Wind Magnetosphere Coupling.- I. The Solar Wind - An Anisotropic Fluid.- II. Magnetospheric Convection.- Frozen-in-Flux.- The Axford-Hines Model.- The Dungey Model.- Open vs. Closed.- Birkeland Currents.- Substorms.- III. Magnetic Coupling.- The Requirement for Magnetic Merging.- Energy Flow in the Open Model.- Momentum Transfer in the Open Model.- Geometry.- IV. Non-Magnetic Coupling.- Wave Transfer.- Particle Transfer.- Diffusion.- V. The Tail.- Appendix A - The Requirement for Return Flow.- Appendix b - mean-square displacement in cross-field Diffusion.- The Quasi-Static (Slow-Flow) Region of the Magnetosphere.- I. Introduction.- II. Qualitative Overview.- Plasma Regions.- Electric Currents.- Dynamics of the Inner Magnetosphere.- III. Adiabatic Invariants and Adiabatic Drifts.- Adiabatic Invariants.- Bounce-Averaged Drifts.- IV. Ionosphere-Magnetosphere Coupling.- Pressure/Birkeland-Current Relation (from Drift Theory).- Pressure/Birkeland-Current Relation from MHD.- Ionospheric Conductivity.- A Fundamental Equation of Ionosphere-Magnetosphere Coupling.- V. Calculations of Convection in the Inner Magnetosphere.- Vasyliunas1 Logical Loop.- Simple Analytic Model.- VI. Computer Model of Inner Magnetospheric Convection.- Introductory Comments.- Input to the Computer Models.- Computer Models-Selected Results.- VII. Particle Loss and Magnetic Field Models.- Loss of Particles from Magnetospheric Flux Tubes.- Magnetic Field Models.- Combined Convection and Magnetic-Field Models.- Global MHD Model of the Earth's Magnetosphere.- Global MHD Model.- Numerical Methods.- Results:.- 1. Shape of the Magnetosphere.- 2. Plasma Flow Patterns in the Magnetosphere.- Origins and Consequences of Parallel Electric Fields.- I. Introduction.- II. Origins of E.- Anomalous Resistivity.- Thermoelectric Effect.- Quasi-neutral Potentials.- Double Layers.- III. Consequences of em.- Field-Aligned Currents.- Magnetospheric Models.- Electrostatic Ion Acoustic Waves.- I. Introduction.- II. Linear properties.- Electrostatic, Collisionless Ion Acoustic Wave.- Effect of an Ambient Magnetic Field.- Instability due to an Electron Drift.- Instability due to a Decay of an Electromagnetic Wave.- III. Incoherent Nonlinear Effects.- Quasi Linear Effects.- Nonlinear Mode Couplings.- IV. Coherent Nonlinear Effects.- Ion Acoustic Shock.- Ion Acoustic Solitons.- Weak Double Layers.- Hydromagnetic Waves in the Magnetosphere.- HM Modes in Cold Plasma.- The Effect of the Ionosphere.- Field Line Resonance.- Solution along B.- Resonances in Warm Plasmas.- Field-Aligned Currents.- Convection Flow and Alfven Waves.- Sources and Sinks of Wave Energy.- Comparative Magnetospheres.- Survey of Magnetospheres.- Plasma Flow: Corotation and its Limits.- Magnetospheric Distance Scales.- The Use and Misuse of Statistical Analyses.- Why Use Statistics?.- Confirmatory Studies.- Exploratory Studies.- Common-Sense Rules.- Useful Statistical Techniques.- Linear Correlation Analysis.- Searching for Periodicities.- Fourier Analysis.- Superposed Epoch Analysis.- Autocorrelation and Cross-Correlation Analyses.- Autocorrelation.- Power Spectral density.- Cross-Correlation Analysis.- Smoothing the Data.- Upper Atmospheric Physics.- Thermospheric Dynamics and Electrodynamics.- I. Introduction.- II. Basic Equations.- Mass Continuity.- Momentum Balance.- Energy Balance.- Pressure and Internal Energy.- Diffusion.- Viscosity.- Heat Conduction.- Electric Conductivities.- III. Large-Scale Thermospheric Structure and Dynamics.- Hydrostatic Equilibrium.- Steady-State Thermal Structure.- Thermospheric Heating.- Mean Meridional Circulation of the Thermosphere.- Steady-State Composition.- Large-Scale Dynamics.- Importance of Ion Drag.- Importance of Viscosity.- Computer Simulations of Thermospheric Dynamics.- IV. Atmospheric Waves.- Entropy Equation.- Pressure Change Equation.- Linearized Perturbation Equations in a Plane Stratified Atmosphere.- Wave Energy Equation.- Two Simplified Limiting Cases.- Dispersion Relation for Waves in a Dissipationless Atmosphere, Neglecting Rotation.- Ducting.- Vertical Energy Flux.- Wave Energy Density.- Properties of Long-Period Gravity Waves.- Gravity Wave Energy Dissipation.- Atmospheric Tides.- V. Electrodynamics.- Basic Equations.- Horizontal and Vertical Current Densities.- Dynamo Action by Winds.- Approximation of Infinitely Conducting Magnetic Field Lines.- Dipole Coordinates.- Solution for V.- Equatorial Electrojet.- VI. Thermospheric Disturbances.- Two-Dimensional Time-Dependent Model Description.- Substorm Simulation.- Electrodynamic Effects of Stormtime Heating.- Energy Transfer to Lower Latitudes.- Stormtime Composition Changes.- Glossary of Symbols.- The Terrestrial Ionosphere.- I. Introduction.- II. Ionospheric Environment.- High-latitude Ionosphere.- Mid-latitude Ionosphere.- Low-latitude Ionosphere.- Ionospheric Layers.- III. The Theory.- Transport Equations.- Collision Terms.- Collision Frequencies.- Stress and Heat Flow Expressions.- Photoionization.- Chemical Reactions.- Heating Rates.- Cooling Rates.- IV. Middle and Low Latitude Ionosphere.- Chapman Layer.- Ambipolar Diffusion.- Diffusive Equilibrium.- Wind-induced Plasma Drift.- Decay of the F-layer.- Thermal Structure.- Diurnal Variation of the Ionosphere.- Solar Cycle Variation of the Ionosphere.- Seasonal Variation of the Ionosphere.- Ionospheric Behavior at Low Latitudes.- V. High latitude ionosphere.- Plasma Convection.- Magnetospheric Convection Pattern.- Electron Density Morphology.- Effect of Electric Fields on Ion Temperature.- Effect of Electric Fields on Ion Composition.- VI. Polar Wind.- Subsonic H+ Outflow.- Supersonic H+ Outflow.- Hydrodynamic Solutions.- Collisionless Solutions.- Self-Similar Solutions.- Photochemical Processes in the Mesosphere and Lower Thermosphere.- I. Physical and Chemical Concepts.- The Hydrostatic Law.- Transport Processes.- Photochemical Production and Loss.- Absorption of Solar Flux.- Calculation of Photodissociation Rates.- II. The one-dimensional continuity equation in the Upper mesosphere.- The Chemistry of H0X and 0X.- Production of Nitric Oxide.- Atomic Oxygen Profile.- III. Ion chemistry.- The Lower E-Region the D-Region Cluster Ions in the D-Region.- D-Region Negative Ion Chemistry.- The Disturbed D-Region.- Physics of the Mesopause Region.- I. Characteristics of the Mesospause Region.- Thermal and Dynamical Structure.- Physical Processes.- II. Some Fundamental Dynamics.- The Perturbation Approach (Linearization).- Thermal Wind Balance.- Wave-Mean Flow Interactions.- III. Radiative Cooling Near the Mesopause.- Simple Radiative Transfer.- Non-LTE and Collisional Relaxation.- The 'Cooling to Space1 and 'Newtonian Cooling' Approximations.- IV. Zonal Mean Latitude Structure.- Radiative and Thermal Budgets.- Radiative-Dynamical Balance and the Possible Role of Wave Stress.- Auroral Excitation and Energy Dissipation.- Penetration of Auroral Electrons into the Atmosphere.- Inelastic Scattering.- Electron Intensity and Energy Deposition.- Excitation by Electron Impact.- Auroral Ion Chemistry and Transport.- Chemical Excitation.- Theory of the Auroral Spectrum.- Dissipation of Auroral Energy.- Auroral Protons.- Summary.- Small-Scale Structure in the Earth1s Ionosphere: Theory and Numerical Simulation.- The Gradient Drift/Collisional Rayleigh-Taylor Instability.- The Motion of Ionospheric Plasma.- Model Simplification and Mathematical Representation.- The Simplest Case Equations for Barium Clouds and for ESF.- Numerical Simulation: General.- The Numerical Solution of the Potential Equation.- The Numerical Solution of the Continuity Equation.- Comparative Ionospheres.- I. The Inner Planets.- Neutral Atmosphere.- Solar Wind-Ionosphere Interaction.- The Dayside Ionosphere: Basic Equations.- The Dayside Ionosphere: Composition.- The Dayside Ionosphere: Energetics.- The Nightside Ionosphere.- II. The Outer Planets.- Jupiter and Saturn: Thermosphere Composition and Temperature Structure.- Jupiter and Saturn: Thermosphere Hydrocarbons and Atomic Hydrogen.- Jupiter and Saturn: The Ionosphere.- The Jovian Satellite Io.- The Saturnian Satellite Titan.- Comets.

by "Nielsen BookData"

Related Books: 1-1 of 1
Details
Page Top