Classification theory of Riemannian manifolds : harmonic, quasiharmonic, and biharmonic functions
Author(s)
Bibliographic Information
Classification theory of Riemannian manifolds : harmonic, quasiharmonic, and biharmonic functions
(Lecture notes in mathematics, 605)
Springer-Verlag, 1977
- : Berlin
- : New York
Available at / 74 libraries
-
Library, Research Institute for Mathematical Sciences, Kyoto University数研
L/N||LNM||6057708358S
-
Hokkaido University, Library, Graduate School of Science, Faculty of Science and School of Science研究室
: Berlin510/L4972020967585
-
No Libraries matched.
- Remove all filters.
Note
Bibliography: p. [473]-484
Includes indexes
Description and Table of Contents
Table of Contents
Preface and historical note.- Laplace-Beltrami operator.- Harmonic functions.- Quasiharmonic functions.- Bounded biharmonic functions.- Dirichlet finite biharmonic functions.- Bounded dirichlet finite biharmonic functions.- Harmonic, quasiharmonic, and biharmonic degeneracies.- Riesz representation of biharmonic functions.- Biharmonic Green's function ?.- Biharmonic Green's function ?: Definition and existence.- Relation of O ? N to other null classes.- Hadamard's conjecture on the Green's function of a clamped plate.
by "Nielsen BookData"