Photosynthetic electron transport and photophosphorylation

書誌事項

Photosynthetic electron transport and photophosphorylation

edited by A. Trebst and M. Avron ; contributors, R. S. Alberte ... [et al.]

(Encyclopedia of plant physiology. New series, v. 5 . Photosynthesis ; 1)

Springer, 1977

  • : Germany
  • : U.S.

タイトル別名

Photosynthesis 1 : photosynthetic electron transport and photophosphorylation

大学図書館所蔵 件 / 65

この図書・雑誌をさがす

注記

Includes bibliographies and indexes

内容説明・目次

内容説明

As editor of the two-part Volume V on photosynthesis in RUHLAND'S Encyclopedia, the forerunner of this series published in 1960, I have been approached by the editors of the present volume to provide a short preface. The justification for following this suggestion lies in the great changes which have been taking place in biology in the two decades between these publications, changes which are reflected in the new editorial plan. Twenty years ago it appeared convenient and formally easy to consider photo- synthesis as a clearly separated field of research, which could be dealt with under two major headings: one presenting primarily photochemical and biochemical prin- ciples, the other physiological and environmental studies. Such a partition, however, as far as aims and opinions of the authors were concerned, resulted in a rather heterogeneous volume. Today, the tendency in experimental biology is towards a merger of previously distinct disciplines. Biochemists and biophysicists have developed their methods to such an extent that, over and above the analysis of individual reaction sequences, work on the manifold interrelationships among cellular activities has become in- creasingly possible. Joining them in growing numbers are the physiologists and ecologists with their wealth of information on activity changes in vivo and on the variability and efficiency of the organisms concerned. Furthermore, biochemists, biophysicists and physiologists also now share a lively interest in ultrastructure research, the results and implications of which, through continually improving methodology, have generated important stimuli for the work in the field of cell function.

目次

  • I. History.- Photosynthesis 1950-75: Changing Concepts and Perspectives.- A. Introduction.- B. Photosynthesis Research at Midcentury.- C. Research Past Midcentury: Some Major Advances.- D. CO2 Assimilation: Experiments with Whole Cells.- E. Evidence for CO2 Assimilation by Isolated Chloroplasts.- F. Investigations of Light Reactions of Photosynthesis: Experimental Advantages of Chloroplasts Over Whole Cells.- G. Discovery of Photosynthetic Phosphorylation.- H. The Concept of a Light-Induced Electron Flow.- I. Noncyclic Photophosphorylation.- J. Role of Cyclic Photophosphorylation: Early Views.- K. Physical Separation of Light and Dark Phases of Photosynthesis in Chloroplasts.- L. Ferredoxins in Chloroplasts and Bacteria.- M. Role of Ferredoxin in Noncyclic Photophosphorylation.- N. Ferredoxin as the Physiological Catalyst of Cyclic Photophosphorylation.- O. Stoichiometry and Regulation of Ferredoxin-Catalyzed Photophosphorylations.- P. Other Ferredoxin-Dependent Reactions in Photosynthetic Cells.- Q. Multiple Ferredoxins: Soluble and Bound.- R. Photosynthetic Electron Carriers.- S. Two Photosystems in Plant Photosynthesis: Origins of a Concept.- T. Two Photosystems: Facts, Hypotheses, and Dogma.- U. Concluding Remarks.- References.- II. Electron Transport.- 1. General 1 a. Physical Aspects of Light Harvesting, Electron Transport and Electrochemical Potential Generation in Photosynthesis of Green Plants.- A. Introduction.- B. Antennae.- I. Physically Different Types of Chlorophylls in Chloroplasts.- II. Resonant Energy Transfer.- III. Distinctive Properties of Antennae Systems I and II.- IV. Size and Interaction of the Antennae Systems.- V. Protective Reactions.- VI. Structure.- C. Electron Transport.- I. Photochemical Reactions.- II. Non-Photochemical Components.- D. Electrochemical Potential Generation.- I. The Generation of an Electric Potential.- II. Proton Translocation.- References.- 1b. Electron Transport in Chloroplasts.- A. General.- B. Photosystem II.- I. The Oxidizing Side of PS II.- II. The Reaction Center Complex of PS II.- III. The Reducing Side of PS II.- C. Photosystem I.- I. The Primary Acceptor of PS I.- II. The Reducing Side of PS I.- III. The Oxidizing Side of PS I.- References.- 2. Porphyrins, Chlorophyll, and Photosynthesis.- A. Introduction.- B. Structure.- C. Function.- D. Evolution.- E. Summary.- References.- 3. Light Conversion Efficiency in Photosynthesis.- A. Basic Principles.- B. The Maximum Efficiency of Photosynthesis: Quantum Yields Under Optimum Conditions.- C. ATP Production and Utilization.- D. Quantum Yields of Growing Cells and Photosynthetic Productivity Under Natural Conditions.- References.- 4. P-700.- A. General.- B. Optical Properties.- C. Oxidation-Reduction.- D. Models.- E. Localization of P-700.- F. Orientation of P-700.- G. Oxidation of P-700.- H. Reduction of P-700.- References.- 5. Chlorophyll Fluorescence: A Probe for Electron Transfer and Energy Transfer.- A. Introduction.- B. Fluorescence Yield and Electron Transport.- I. A (Q).- II. C-550.- III. P-680.- IV. The Back-Reaction.- C. The Photochemical Model.- I. Photosystem II.- II. Photosystem I.- III. The Photochemical Apparatus.- IV. Energy Distribution Between PS I and PS II.- D. Appendix.- References.- 6. Electron Paramagnetic Resonance Spectroscopy.- A. Introduction.- B. EPR Techniques.- C. EPR Studies in Photosynthesis.- I. Bacterial Photosynthesis.- II. Signals in Photosystem II (PS II).- III. Signals in Photosystem I (PS I).- IV. Spin Labels.- D. Conclusion.- References.- 7. Primary Electron Acceptors.- A. Chloroplast Photosystem I.- I. Background.- II. Electron Paramagnetic Resonance (EPR) Studies of Bound Iron-Sulfur Proteins.- III. Flash Kinetic Spectroscopy of P-430.- IV. Relationship of P-430 to Bound Iron-Sulfur Protein.- B. Chloroplast Photosystem II.- I. X-320.- II. C-550.- III. On the Chemical Identity of the Photosystem II Primary Electron Acceptor.- References.- 8. Oxygen Evolution and Manganese.- A. Introduction.- B. Photosystem II.- C. Kinetic Model of O2 Production.- D. Interconversion of S-States in the Dark.- E. Turnover Reactions of Photosystem II.- F. Phenomena Related to the S-States.- G. Chemical Treatments that Reversibly Affect the O2 Evolving Site.- H. Localization of the Oxygen-Evolving Site.- References.- 9. Ferredoxin.- A. Introduction.- B. Extraction and Purification.- C. Assay.- D. Occurrence and Biosynthesis.- E. Properties.- F. Nature of the Active Center.- G. Stability.- H. Biological Function.- I. Immunological Studies.- J. Homology in the Primary Structures.- References.- 10. Flavodoxin.- A. Biological Properties.- B. Chemical Properties.- References.- 11. Flavoproteins.- A. Introduction.- B. Isolation and Physico-Chemical Properties of the Chloroplast Flavoprotein, Ferre doxin-NADP+ Reductase,.- C. Kinetic Properties of Ferredoxin-NADP+ Reductase.- D. Multiple Forms of the Chloroplast Flavoprotein.- References.- 12. Cytochromes.- A. Introduction.- B. Isolated Higher Plant Cytochromes.- C. Isolated Algal Cytochromes.- D. Cytochrome Function in Electron Transport.- References.- 13. Plastoquinone.- A. Introduction and Properties.- B. Experiments with Extracted Chloroplasts.- C. Reactions of Endogenous Plastoquinone as Secondary Electron Acceptor.- D. Identity of the Primary Electron Acceptor of Photosystem II.- E. Specific Inhibitors of Plastoquinone.- References.- 14. Plastocyanin.- A. Distribution and Localization.- B. Extraction and Purification.- C. Molecular Properties.- D. Function in Photosynthetic Electron Transport System.- References.- 15. Artificial Acceptors and Donors.- A. Introduction.- B. General Aspects.- C. Electron Acceptors.- D. Electron Donors.- E. Compounds Accepting and Donating Electrons-Cyclic Electron Transport and Bypasses.- F. The Topography of the Chloroplast Membrane and Artificial Energy Conservation 261 References.- References.- 16. Inhibitors of Electron Transport.- A. Introduction.- B. Description of Inhibitors.- I. Inhibitors that Act on Water-Oxidizing Side of Photosystem II.- II. Inhibitors that Block Exit of Electrons from Photosystem II.- III. Plastoquinone Antagonists.- IV. Inhibitors of Electron Transfer Between Plastoquinone and cytochrome f.- V. Inhibitors of Plastocyanin.- VI. Inhibitors of Reactions in Ferredoxin-NADP+ Region.- References.- 17. Antibodies.- A. Introduction.- B. General Considerations on the Application of Antibodies to Studies of Membrane Function.- I. Properties of Antibodies.- II. Usefulness of Antibodies.- C. Results and Conclusions from Experiments with Antisera Against Individual Chloroplast Antigens.- D. Summary and Outlook.- References.- 18. Chemical Modification of Chloroplast Membranes.- A. Introduction.- B. N-ethylmaleimide (NEM).- C. Carbodiimides.- D. Lactoperoxidase-Catalyzed Iodination.- E. Trypsin.- F. Diazoniumbenzenesulfonic Acid (DABS).- References.- III. Energy Conservation.- 1. Photophosphorylation.- A. Relation of Electron Transport to Phosphorylation.- I. Electron Transport Patterns.- II. Coupling Between Electron Transport and Phosphorylation.- III. Energy Conservation Sites.- B. Chemiosmotic Principles of Coupled Electron Flow and ATP Synthesis.- I. The Chemiosmotic Hypothesis
  • and Others.- C. Evidence Relating to Operation of Chemiosmotic Principles in Chloroplasts.- I. Light-Driven Proton Uptake.- II. The Membrane Potential.- III. ATP-Driven Proton Uptake.- IV. Post-Illumination ATP Synthesis ("XE").- V. Acid to Base Transition.- VI. Stoichiometrics and Thermodynamics.- D. Role of the Coupling Factor in Phosphorylation.- I. CF1 Enzymatic Activities.- II. Nature, Visualization, Location of the Protein.- III. Uncoupling, Recoupling, and Function in Proton Translocation.- IV. Function in Phosphorylation: Conformational Changes and Ligand Binding.- References.- 2. Proton and Ion Transport Across the Thylakoid Membranes.- A. Introduction.- B. The Mechanism of Light-Induced Proton Transport.- C. Secondary Ion Transport.- D. Electrochemical Potential of Protons Across the Thylakoid Membranes.- E. Ion Transport and the Mechanism of Uncoupling in Chloroplasts.- F. ATP-Induced Proton Transport.- G. Proton Transport in Subchloroplast Particles and Chromatophores.- References.- 3. Bound Nucleotides and Conformational Changes in Photophosphorylation.- A. Introduction.- B. Tightly Bound Nucleotides on Isolated and Membrane-Bound CF1.- C. Nucleotide and Nucleotide Analogs: Binding and Activity.- D. Antisera to CF1.- E. Conformational Coupling in Thylakoid Membranes.- References.- 4. The High Energy State.- A. Coupling Mechanism Hypotheses.- B. Experimental Evidence for the Existence of a High Energy State.- C. The Energy Level and the Energy Capacity of the High Energy State.- References.- 5. ATPase.- A. Introduction.- B. History of ATPase.- C. Feedback in ATPase.- D. Conformational Changes Relevant for ATPase.- E. Component Requirements of Membrane-Bound ATPase in General.- F. Relations of ATPase with Other Topics in Bioenergetics.- References.- 6. Post-Illumination ATP Formation.- A. Introduction.- B. Materials and Methods.- C. General Conditions for Post-Illumination ATP Formation.- I. Two-Stage ATP Synthesis.- II. Delayed ATP Synthesis in Flashing Light.- D. High Energy State Intermediate.- I. Chemical High Energy State Intermediate.- II. High Energy State and Membrane Property Changes.- E. Hypotheses on the Nature of the High Energy State Intermediate Xe.- F. Conclusions.- References.- 7. Chloroplast Coupling Factor.- A. Introduction.- B. Reconstitution of CF1 Depleted Chloroplasts..- C. Preparation of CF1.- D. Physical Properties of CF1 ..- E. Catalytic Properties of Activated CF1.- F. Subunit Structure of CF1.- G. Chemical Modification of CF1 and the Nature of its Active Site.- H. Nucleotide Binding and the Mechanism of ATP Formation.- References.- 8. Field Changes.- A. Introduction.- B. Quantitative Results on Changes of Membrane Potential.- C. Concept of Ion Transport Phenomena.- D. Relationship Between Membrane Potential and ATP Formation.- E. Summary.- References.- 9. Acid Base ATP Synthesis in Chloroplasts.- A. Introduction.- B. General Properties of the System.- C. Dicarboxylic Acid Requirement.- D. The Electrochemical Gradient of Protons and ATP Synthesis.- E. Kinetics.- F. Activation of ATP Hydrolysis.- References.- 10. Energy-Dependent Conformational Changes.- A. Introduction.- B. Conformational Mechanism of Energy Transduction.- C. Energy-Dependent Structural Changes in the Thylakoid Membrane.- D. Energy-Dependent Conformational Changes in Chloroplast ATPase.- References.- 11. Uncoupling of Electron Transport from Phosphorylation in Chloroplasts.- A. The Concept of Uncoupling.- B. Criteria of Uncoupling.- C. Types of Uncoupling by Typical Uncouplers.- I. Malfunctions of the Coupling Factor.- II. Malfunctions of the Membrane.- III. Uncoupling by Unknown Mechanisms.- D. A General Consideration of Mechanisms of Uncoupling.- References.- 12. Energy Transfer Inhibitors of Photophosphorylation in Chloroplasts.- A. Definition of Energy Transfer Inhibitors.- B. Energy Transfer Inhibitors Which Probably Exert Their Effects on Coupling Factor 1.- C. Energy Transfer Inhibitors Whose Site of Action is Unknown.- D. Some Observations and Conclusions.- References.- 13. Photophosphorylation in vivo.- A. Introduction.- B. Methods.- C. Cyclic Photophosphorylation in vivo.- D. Pseudocyclic Photophosphorylation in vivo.- E. Noncyclic Photophosphorylation in vivo.- F. Regulation of Photophosphorylation in vivo.- G. Photophosphorylation in vivo and CO2 Fixation.- H. Concluding Remarks.- References.- 14. Delayed Luminescence.- A. General.- B. Methods.- C. Phenomenology.- I. Emission and Excitation Spectrum.- II. Decay of Delayed Luminescence.- III. Activation of Delayed Luminescence.- IV. Delayed Luminescence and the S-States.- D. Origin of Delayed Luminescence in Photosynthetic Systems.- I. Delayed Luminescence from Plants.- II. Models for the Mechanism of Delayed Luminescence in Photosynthetic Systems.- References.- 15. Exchange Reactions.- A. Introduction.- B. The Development of the Study of Exchange Reactions in Photophosphorylation.- C. Mechanisms of Exchange Reactions.- D. Requirement for Substrates.- E. The Relations Between Exchange Reactions and the Mechanism of Photophosphorylation.- F. Energy Requirements.- G. Reconstitution of Vesicles Catalyzing PrATP Exchange.- References.- IV. Structure and Function.- 1. Introduction to Structure and Function of the Photosynthesis Apparatus.- A. The Membrane Components.- B. Ultrastructure of Thylakoid Membranes.- I. General Aspects.- II. The Outer (Matrix Side) Surface (OS).- III. The Inner (Lumen Side) Surface (IS).- IV. The Inner Zone of the Thylakoid Membrane..- C. The Relations Between Peripheral and Integral Particles.- D. Mobility of Membrane Particles.- E. The Identification of Membrane Constituents.- F. Correlation Between Ultrastructural and Serological Studies.- G. The Relationship Between Structure and Function.- H. Conclusions.- I. Freeze-Fracture Nomenclature Used for Studies of the Thylakoid Membrane.- References.- 2. The Topography of the Thylakoid Membrane of the Chloroplast.- A. Introduction.- B. The Distribution of Photosystems in the Chloroplast Lamellar Structure.- I. The Model.- II. The Supporting Evidence.- III. The Contradictions.- C. Reactivity in the Partition and Nonpartition Regions.- I. The Localization of NADP+ Reductase.- II. The Localization of ATPase.- III. The Consequences of the Model.- IV. The Role of Grana.- D. The Asymmetry of the Membrane.- I. The Morphological Evidence for the Asymmetry of the Membrane.- II. The Topography Across the Membrane.- III. The Topography Along the Membrane.- E. Concluding Remarks.- References.- 3. Subchloroplast Preparations.- A. Introduction.- B. The Fractionation Pattern.- C. The Distribution of Photosystems in the Grana and in the Intergrana Region of Chloroplasts from Higher Plants.- D. The Fractionation of Grana Stacks.- E. The Alteration of Reaction Properties and the Diversity of Chloroplast Fragments.- F. The Disorientation of Electron Carriers and the Effect of Plastocyanin.- G. Prospect.- References.- 4. Fragmentation.- A. Introduction.- B. Differentiation of the Photosystems.- C. Fragmentation of Chloroplasts.- D. Digitonin Subchloroplast Particles.- E. Triton Subchloroplast Particles.- F. Protein Composition of Subchloroplast Particles.- References.- 5. The Organization of Chlorophyll in vivo.- A. Introduction.- B. Existence of Multiple Chlorophyll-Proteins in Higher Plants.- C. P-700-Chlorophyll a-Protein.- D. The Light Harvesting Chlorophyll a/b-Protein.- E. Other Chlorophyll-Proteins in the Plant Kingdom.- F. Content of Chlorophyll-Proteins in Higher Plants.- G. Summary and Concluding Remarks.- References.- 6. Development of Chloroplast Structure and Function.- A. Ultrastructural Changes During Greening.- B. Spectroscopic Changes During Greening.- C. Chlorophyll Formation in Relation to Ultrastructural and Spectroscopic Changes.- D. Composition of Developing Thylakoids.- E. Development of Photochemical Activity.- F. Cytochrome and P-700 Redox Changes in Developing Plastids.- G. Correlation of Ultrastructural Changes with Function.- References.- V. Algal and Bacterial Photosynthesis.- 1. Eukaryotic Algae.- A. Introduction.- B. Objects.- C. Pigments and Pigment Systems.- D. Electron Transport and Photophosphorylation.- I. General Aspects.- II. Photosystems.- III. Noncyclic Electron Transport.- IV. Cyclic Electron Transport.- V. Pseudocyclic Electron Transport.- VI. Regulation of Electron Transport Systems.- VII. Special Electron Acceptors.- VIII. Photophosphorylation.- References.- 2. Blue-Green Algae.- A. Introduction.- B. Membrane Structure.- C. Major Accessory Pigments.- D. Photosystem II Reaction Centers.- E. Photosystem I.- F. Electron Transport from Photosystem I to NADP+.- G. Reactants Linking the Photosystems.- H. Water Splitting, Integrated Function and Phosphorylation.- References.- 3. Electron Transport and Photophosphorylation in Photosynthetic Bacteria.- A. Introduction.- B. Photosynthetic Electron Transport.- I. General.- II. Reaction Centers and Primary Events.- III. Components of the Electron Transport Chain.- IV. Sites of Coupled Phosphorylation.- V. Photoreduction of NAD+.- C. Energy Conservation.- I. General.- II. Proton Uptake, pH Gradient and Membrane Potential.- III. Quantitative Estimation of the Light-Induced Electrochemical Proton Gradient in Relation to the Phosphate Potential.- IV. The High Energy State and its Utilization (Postillumination and Acid-Base Phosphorylation).- V. ATPase, Pyrophosphatase and Exchange Reactions.- VI. Coupling Factors.- D. Concluding Remarks.- References.- Author Index.

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示

詳細情報

ページトップへ