Aspects of modern logic
著者
書誌事項
Aspects of modern logic
(Synthese library)
Reidel, c1970
- タイトル別名
-
Moderne logica
大学図書館所蔵 全43件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Edited by E. M. Barth and J. J. A. Mooij; translated from the Dutch by D. H. J. de Jongh and S. De Jongh-Kearl
Bibliography: p. [166]-170
Includes indexes
内容説明・目次
内容説明
It is common to consider an area of science as a system of real or sup posed truths which not only continuously extends itself, but also needs periodical revision and therefore tests the inventive capacity of each generation of scholars anew. It sounds highly implausible that a science at one time would be completed, that at that point within its scope there would be no problems left to solve. Indeed, the solution of a scientific problem inevitably raises new questions, so that our eagerness for knowledge will never find lasting satisfaction. Nevertheless there is one science which seems to form an exception to this rule, formal logic, the theory of rigorous argumentation. It seems to have reached the ideal endpoint of every scientific aspiration already very shortly after its inception; using the work of some predecessors, Aristotle, or so it is at least assumed by many, has brought this branch of science once and for all to a conclusion. Of course this doesn't sound that implausible. We apparently know what rigorous argumentation is; otherwise various sciences, in particular pure mathematics, would be completely impossible. And if we know what rigorous argumentation is, then it cannot be difficult to trace once and for all the rules which govern it. The unique subject of formal logic would therefore entail that this science, in variance with the rule which holds for all other sciences, has been able to reach completion at a certain point in history.
目次
I.- I. The Fundamental Criterion for the Soundness of Arguments.- 1. Introduction.- 2. Fundamental criterion for the soundness of arguments.- 3. The formal character of logic.- 4. The transition to mathematical logic.- 5. Construction of a fragment of modern logic.- 6. Natural deduction.- 7. Supplementary considerations.- II. Inferential and Classical Logic.- 8. Semantic and operational aspects of meaning.- 9. Purely implicational logic.- 10. Deduction problems and deductive tableaux.- 11. Truth-value problems and semantic tableaux.- 12. Inferential and classical logic - Peirce's Law.- 13. Other aspects of meaning.- 14. Informal logic : G. Mannoury, A. Naess, Ch. Perelman.- III. Proof by Contradiction.- 15. Introductory remarks.- 16. Conversion of closed tableaux into natural deductions.- 17. The negation.- 18. Semantic and deductive tableaux.- 19. Final considerations - completeness of classical purely implicational logic.- IV. The Problem of Locke-Berkeley.- 20. An example.- 21. Statement of the problem and attempts at its solution.- 22. The exposition method of Aristotle.- 23. Appeal to the method of semantic tableaux.- 24. The completeness problem - informal and heuristic deduction methods.- V. On the So-Called 'Thought Machine'.- 25. Introduction.- 26. Binary arithmetic and logic.- 27. Specific operations of the human intellect.- 28. Prehistory.- 29. Difficulties.- 30. Development of modern formal logic.- 31. Automatization of reasoning.- 32. Analysis of the difficulties.- 33. An example.- 34. Heuristics or methodology.- 35. Methodology.- 36. Concluding remarks.- II.- VI. The Paradoxes.- VII. Reason and Intuition.- VIII. Formalized Language and Common Usage.- IX. Considerations about Logical Thought.- X. Constants of Mathematical Thought.- Sources.- Index of Names.- Index of Subjects.
「Nielsen BookData」 より