Einführung in die Algebra
著者
書誌事項
Einführung in die Algebra
(Hochschultext)
Springer-Verlag, 1973
- gw:
- us:
大学図書館所蔵 全12件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
内容説明・目次
目次
I. Grundbegriffe.- 1. Die ganzen Zahlen.- 2. Mengen und Mengenoperationen.- 3. Abbildungen.- 4. Endliche Mengen.- II. Gruppen.- 1. Definitionen und erste Resultate.- 2. Untergruppen.- 3. Homomorphismen, Normalteiler und Faktorgruppen.- 4. Zyklische Gruppen.- 5. Die symnetrischen und alternierenden Gruppen.- III. Aus der Ringtheorie.- 1. Definitionen, Beispiele und Rechenregeln.- 2. Homomorphismen.- 3. Ideale und Quotientenringe.- 4. Der Ring der ganzen Zahlen.- 5. Quotientenkoerper.- 6. Angeordnete Gruppen, Ringe und Koerper.- 7. Die reellen Zahlen.- 8. Die Hensel'sehen p-adischen Zahlen.- 9. Euklidische Ringe.- 10. Der Ring der ganzen Gauss'sehen Zahlen.- 11. Polynomringe.- IV. Vektorraume.- 1. Moduln.- 2. Die Isomorphiesatze.- 3. Endlich erzeugte Vektorraume.- 4. Das Auswahlaxiom.- 5. Die Struktur von beliebigen Vektorraumen.- 6. Vektorraume und ihre Unterraumverbande.- 7. Direkte Summen.- 8. Der Dualraum.- 9. Der Endoimorphismenring eines Vektorraumes.- V. Lineare Abbildungen und Matrizen.- 1. Darstellung von linearen Abbildungen durch Matrizen.- 2. Quatemionenschiefkoerper.- 3. Duale Abbildungen.- 4. Systeme von linearen Gleichungen.- 5. Determinanten.- VI. Aus der Koerpertheorie.- 1. Erweiterungskoerper.- 2. Nullstellen von Polynomen.- 3. Galoisfeider.- 4. Symmetrische Funktionen.- 5. Die konplexen Zahlen.- 6. Ein Satz von Wedderburn.- VII. Normalformen von linearen Abbildungen und Matrizen.- 1. EndK(V) als K-Algebra.- 2. Eigenwerte.- 3. Hauptidealringe.- 4. Moduln uber Hauptidealringen.- 5. Anwendungen auf lineare Abbildungen.
「Nielsen BookData」 より