Series, integral calculus, theory of functions
著者
書誌事項
Series, integral calculus, theory of functions
(Die Grundlehren der mathematischen Wissenschaften, Bd. 193 . Problems and theorems in analysis ; v. 1)
Springer, 1972
- : gw
- : us
- タイトル別名
-
Aufgaben und Lehrsätze aus der Analysis
大学図書館所蔵 全86件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Rev. and enl. translation of: Aufgaben und Lehrsätze aus der Analysis. 4th ed. 1970
Includes indexes
"Corrected printing"--T.p. verso of 1978 printing
内容説明・目次
内容説明
From the reviews: "The work is one of the real classics of this century; it has had much influence on teaching, on research in several branches of hard analysis, particularly complex function theory, and it has been an essential indispensable source book for those seriously interested in mathematical problems." Bulletin of the American Mathematical Society
目次
One Infinite Series and Infinite Sequences.- 1 Operations with Power Series.- Additive Number Theory, Combinatorial Problems, and Applications.- Binomial Coefficients and Related Problems.- Differentiation of Power Series.- Functional Equations and Power Series.- Gaussian Binomial Coefficients.- Majorant Series.- 2 Linear Transformations of Series. A Theorem of Cesaro.- Triangular Transformations of Sequences into Sequences.- More General Transformations of Sequences into Sequences.- Transformations of Sequences into Functions. Theorem of Cesaro.- 3 The Structure of Real Sequences and Series.- The Structure of Infinite Sequences.- Convergence Exponent.- The Maximum Term of a Power Series.- Subseries.- Rearrangement of the Terms.- Distribution of the Signs of the Terms.- 4 Miscellaneous Problems.- Enveloping Series.- Various Propositions on Real Series and Sequences.- Partitions of Sets, Cycles in Permutations.- Two Integration.- 1 The Integral as the Limit of a Sum of Rectangles.- The Lower and the Upper Sum.- The Degree of Approximation.- Improper Integrals Between Finite Limits.- Improper Integrals Between Infinite Limits.- Applications to Number Theory.- Mean Values and Limits of Products.- Multiple Integrals.- 2 Inequalities.- Inequalities.- Some Applications of Inequalities.- 3 Some Properties of Real Functions.- Proper Integrals.- Improper Integrals.- Continuous, Differentiate, Convex Functions.- Singular Integrals. Weierstrass' Approximation Theorem.- 4 Various Types of Equidistribution.- Counting Function. Regular Sequences.- Criteria of Equidistribution.- Multiples of an Irrational Number.- Distribution of the Digits in a Table of Logarithms and Related Questions.- Other Types of Equidistribution.- 5 Functions of Large Numbers.- Laplace's Method.- Modifications of the Method.- Asymptotic Evaluation of Some Maxima.- Minimax and Maximin.- Three Functions of One Complex Variable. General Part.- 1 Complex Numbers and Number Sequences.- Regions and Curves. Working with Complex Variables.- Location of the Roots of Algebraic Equations.- Zeros of Polynomials, Continued. A Theorem of Gauss.- Sequences of Complex Numbers.- Sequences of Complex Numbers, Continued: Transformation of Sequences.- Rearrangement of Infinite Series.- 2 Mappings and Vector Fields.- The Cauchy-Riemann Differential Equations.- Some Particular Elementary Mappings.- Vector Fields.- 3 Some Geometrical Aspects of Complex Variables.- Mappings of the Circle. Curvature and Support Function.- Mean Values Along a Circle.- Mappings of the Disk. Area.- The Modular Graph. The Maximum Principle.- 4 Cauchy's Theorem * The Argument Principle.- Cauchy's Formula.- Poisson's and Jensen's Formulas.- The Argument Principle.- Rouche's Theorem.- 5 Sequences of Analytic Functions.- Lagrange's Series. Applications.- The Real Part of a Power Series.- Poles on the Circle of Convergence.- Identically Vanishing Power Series.- Propagation of Convergence.- Convergence in Separated Regions.- The Order of Growth of Certain Sequences of Polynomials.- 6 The Maximum Principle.- The Maximum Principle of Analytic Functions.- Schwarz's Lemma.- Hadamard's Three Circle Theorem.- Harmonic Functions.- The Phragmen-Lindelof Method.- Author Index.
「Nielsen BookData」 より