Geometry and probability in Banach spaces

Bibliographic Information

Geometry and probability in Banach spaces

Laurent Schwartz ; notes by Paul R. Chernoff

(Lecture notes in mathematics, 852)

Springer-Verlag, 1981

  • : Berlin
  • : New York

Available at  / 77 libraries

Search this Book/Journal

Note

Bibliography: p. 99

Includes index

Description and Table of Contents

Table of Contents

Type and cotype for a Banach space p-summing maps.- Pietsch factorization theorem.- Completely summing maps. Hilbert-Schmidt and nuclear maps.- p-integral maps.- Completely summing maps: Six equivalent properties. p-Radonifying maps.- Radonification Theorem.- p-Gauss laws.- Proof of the Pietsch conjecture.- p-Pietsch spaces. Application: Brownian motion.- More on cylindrical measures and stochastic processes.- Kahane inequality. The case of Lp. Z-type.- Kahane contraction principle. p-Gauss type the Gauss type interval is open.- q-factorization, Maurey's theorem Grothendieck factorization theorem.- Equivalent properties, summing vs. factorization.- Non-existence of (2+?)-Pietsch spaces, Ultrapowers.- The Pietsch interval. The weakest non-trivial superproperty. Cotypes, Rademacher vs. Gauss.- Gauss-summing maps. Completion of grothendieck factorization theorem. TLC and ILL.- Super-reflexive spaces. Modulus of convexity, q-convexity "trees" and Kelly-Chatteryji Theorem Enflo theorem. Modulus of smoothness, p-smoothness. Properties equivalent to super-reflexivity.- Martingale type and cotype. Results of Pisier. Twelve properties equivalent to super-reflexivity. Type for subspaces of Lp (Rosenthal Theorem).

by "Nielsen BookData"

Related Books: 1-1 of 1

Details

Page Top