Number theory, Carbondale 1979 : proceedings of the Southern Illinois Number Theory Conference, Carbondale, March 30 and 31, 1979
著者
書誌事項
Number theory, Carbondale 1979 : proceedings of the Southern Illinois Number Theory Conference, Carbondale, March 30 and 31, 1979
(Lecture notes in mathematics, 751)
Springer-Verlag, 1979
- : Berlin
- : New York
大学図書館所蔵 件 / 全71件
-
該当する所蔵館はありません
- すべての絞り込み条件を解除する
注記
Includes bibliographies and index
内容説明・目次
- 巻冊次
-
: New York ISBN 9780387095592
内容説明
The ease of use of the programs in the application to ever more complex cases of disease and pestilence. The lack of need on the part of the student or modelers of mathematics beyond algebra and the lack of need of any prior computer programming experience. The surprising insights that can be gained from initially simple systems models.
目次
Part I: Introduction
1. The Why and How of Dynamic Modeling
1.1. Introduction
1.2. Static, Comparative-Static and Dynamic Models
1.3. Model Complexity and Explanatory Power
1.4. Model Components
1.5. Modeling in STELLA
1.6. Analogy and Creativity
1.7. STELLA's Numeric Solution Techniques
1.8. Sources of Model Errors
1.9. The Detailed Modeling Process
1.10. Questions and Tasks
2. Theory and Concepts
2.1. Basic Epidemic Model
2.2. Basic Epidemic Model with Randomness
2.3. Loss of Immunity
2.4. Two-population Epidemic Model
2.5. Epidemic with Vaccination
2.6. Questions and Tasks
3. Insect Dynamics
3.1. Matching Experiments and Models of Insect Life Cycles
3.2. Optimal Insect Switching
3.3. Two Age Class Parasite Model
3.4. Questions and Tasks
Part II: Applications
4. Malaria and Sickle Cell Anemia
4.1. Malaria
4.1.1. Basic Malaria Model
4.1.2. Questions and Tasks
4.2. Sickle Cell Anemia and Malaria in Balance
4.2.1. Sickle Cell Anemia
4.2.2. Questions and Tasks
5. Encephalitis
5.1. St. Louis Encephalitis
5.2. Questions and Tasks
6. Chagas Disease
6.1. Chagas Disease Spread and Control Strategies
6.2. Questions and Tasks
7. Lyme Disease
7.1. Lyme Disease Model
7.2. Questions and Tasks
8. Chicken Pox and Shingles
8.1. Model Assumptions and Structure
8.2. Questions and Tasks
9. Toxoplasmosis
9.1. Introduction
9.2. Model Construction
9.3. Results
9.4. Questions and Tasks
10. The Zebra Mussel
11. Biological Control of Pestilence
11.1. Herbivory and Algae
11.1.1. Herbivore-Algae Predator-Prey Model
11.1.2. Questions and Tasks
11.2. Bluegill Population Management
11.2.1. BluegillDynamics
11.2.2. Impacts of Fishing
11.2.3. Impacts of Disease
11.2.4. Questions and Tasks
11.3. Woolly Adelgid
11.3.1. Infestation of Fraser Fir
11.3.2. Adelgid and Fir Dynamics
11.3.3. Questions and Tasks
12. Western Corn Rootworm Population Dynamics and Coevolution
12.1. Western Corn Rootworm
12.2. Model Development
12.3. Questions and Tasks
13. Chaos and Pestilence
13.1. Basic Disease Model with Chaos
13.1.1. Model Setup
13.1.2. Detecting and Interpreting Chaos
13.1.3. Questions and Tasks
13.2. Chaos with Nicholson-Bailey Equations
13.2.1. Host-Parasitoid Interactions
13.2.2. Questions and Tasks
14. Catastrophe and Pestilence
14.1. Basic Catastrophe Model
14.2. Spruce Budworm Catastrophe
14.3. Questions and Tasks
15. Spatial Dynamics of Pestilence
15.1. Diseased and Healthy Migrating Insects
15.1.1. Introduction
15.1.2. Model Design
15.1.3. Results
15.1.4. Questions and Tasks
15.2. The Spatial Dynamic Spread of Rabies in Foxes
15.2.1. Introduction
15.2.2. Fox Rabies in Illinois
15.2.3. Previous Fox Rabies Models
15.2.4. The Rabies Virus
15.2.5. Fox Biology
15.2.6. Model Design
15.2.7. Cellular Model
15.2.8. Model Assumptions
15.2.9. Georeferencing the Modeling Process
15.2.10. Spatial Characteristics
15.2.11. Model Constraints
15.2.12. Model Results
15.2.13. Rabies Pressure
15.2.14. The Effects of Disease Alone
15.2.15. Hunting Pressure
15.2.16. Controlling the Disease
Part III: Conclusions
16. Conclusions
- 巻冊次
-
: Berlin ISBN 9783540095590
目次
On certain irrational values of the logarithm.- Recent results on fractional parts of polynomials.- On the development of Gelfond's method.- Transcendental numbers.- Diophantine equations over ?(t) and complex multiplication.- Abhyankar's lemma and the class group.- Systems of distinct representatives and minimal bases in additive number theory.- Conjectures on elliptic curves over quadratic fields.- Ultrafilters and combinatorial number theory.- Some results related to minimal discriminants.- Cyclic cubic fields that contain an integer of given index.- Unique and almost unique factorization.- Hecke - Weil - Jacquet - Langlands theorem revisited.- Where are number fields with small class number?.- Kunneth formula for L-functions.- The Hausdorff dimension of a set of non-normal well approximable numbers.- A combinatorial problem in additive number theory.- The number of bits in a product of odd integers.- Prime discriminants in real quadratic fields of narrow class number one.- Additive h-bases for n.- A running time analysis of Brillhart's continued fraction factoring method.
「Nielsen BookData」 より