Coherent nonlinear optics : recent advances
Author(s)
Bibliographic Information
Coherent nonlinear optics : recent advances
(Topics in current physics, v. 21)
Springer-Verlag, 1980
- : us
- : gw
Available at 58 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
Includes bibliographical references and index
Description and Table of Contents
Table of Contents
1. Coherent Nonlinear Optics.- 1.1 Introductory Comments.- References.- 2. Superradiance.- 2.1 Background Material.- 2.2 Physical Principles.- 2.3 Theoretical Treatments.- 2.3.1 Initiation of Superradiance: Quantized Field Treatment.- 2.3.2 Semiclassical Theory.- 2.4 Results of the Theory.- 2.4.1 Superradiance in the Ideal Limit.- 2.4.2 Influence of Quantum Fluctuations.- 2.4.3 Deviations from Ideal Behavior.- Finite Inversion Time.- Uniform Inversion: Cooperation Length.- Decay and Dephasing Times.- Feedback Initial Polarization.- Initial Polarization.- 2.4.4 Further Discussion of the Basic Assumptions.- Neglect of Interaction of Forward and Backward Waves.- Limitations of the Plane Wave Approximation.- 2.4.5 Point Sample Superradiance.- 2.5 Relation to Other Coherent Phenomena.- 2.5.1 Limited Superradiance.- 2.5.2 Transient Phenomena in Optically Thick Media.- 2.5.3 Stimulated and Superradiant Emission.- 2.6 Experiments.- 2.6.1 Experimental Observation of Superradiance.- 2.6.2 Recent Experimental Results.- 2.6.3 Comparison with Theory.- 2.7 Concluding Remarks.- 2.7.1 Applications.- 2.7.2 Summary.- References.- 3. Coherence in High Resolution Spectroscopy.- 3.1 Coherent Phenomena in Resonant Processes.- 3.2 Coherent Phenomena in Saturated Absorption Spectroscopy.- 3.2.1 Standing Wave.- 3.2.2 Probe Wave Resonances.- Oppositely Traveling Waves.- Unidirectional Waves.- High-Frequency Stark Effect on Doppler Broadened Transitions.- Spectroscopic Applications. Measurement of Relaxation Constants.- Study of Level Structures and Separation of Weak Lines.- Optical Instability. Generation Stability.- Recoil Effect.- 3.2.3 Influence of Collisions on Coherent Processes.- Study of Relaxation Processes.- Dipole Scattering.- Influence of the Elastic Scattering Without Phase Randomization on Resonance Characteristics.- 3.3 Coherent Phenomena in Multilevel Systems.- 3.3.1 Resonant Processes in Three-Level Systems.- 3.3.2 Two-Photon Resonances.- 3.3.3 Relation to Other Phenomena.- 3.4 Method of Separated Optical Fields.- 3.4.1 Two-Photon Resonance in Separated Fields.- Narrow Two-Photon Absorption Resonances of the Sequence of Supershort Pulses in a Gas.- 3.4.2 Resonance in Separated Fields for Two-Level Atoms.- 3.4.3 Coherent Radiation and Macroscopic Polarization Transfer in Separated Fields.- 3.4.4 Properties of Coherent Radiation in Separated Fields.- Destruction of an Interference Structure and Attainment of Resonances with a Radiative Width.- Particle Scattering.- 3.4.5 Coherent Raman Scattering in Separated Fields.- 3.4.6 Transient Resonant Coherent Effects.- References.- 4. Multiphoton Resonant Processes in Atoms.- 4.1 Various Experimental Aspects of Resonant Multiphoton Transitions in Atoms.- 4.1.1 Selective Pumping of an Excited Level with Multiphoton Transition.- 4.1.2 Intermediate Step in Other Processes.- 4.1.3 Spectroscopy Using Broadband Lasers.- 4.2 Doppler-Free Two-Photon Experiments.- 4.2.1 Principle of Doppler-Free Multiphoton Transitions.- 4.2.2 Experimental Observation of Doppler-Free Two-Photon Transitions.- Typical Experiment in Sodium.- Thermoionic Detection.- 4.2.3 Doppler-Free Two-Photon Transitions in Hydrogen.- 4.2.4 Other Possibilities of Doppler-Free Two-Photon Transitions.- 4.2.5 Experiments with Two Different Light Sources.- 4.3 Theory of Two-Photon Transitions in Atoms.- 4.3.1 The Effective Hamiltonian.- 4.3.2 Solution of the Density Matrix Equation.- 4.3.3 Case of Two Waves with Complex Polarizations.- 4.3.4 Two-Photon Line Shape in Vapors.- 4.3.5 Light Shifts.- Comparison with Experiments.- 4.3.6 Selection Rules for Two-Photon Transitions.- 4.4 Multiphoton Transitions.- 4.4.1 Generalization of the Effective Hamiltonian.- 4.4.2 Discussion of the Light Shifts.- Case of a Standing Wave.- 4.4.3 Application to Multiphoton Ionization.- 4.4.4 Doppler-Free Three-Photon Transition.- 4.4.5 Three-Photon Selection Rules.- 4.5 Dispersion Near a Two-Photon Resonance.- 4.5.1 Refractive Index for a Travelling Wave.- 4.5.2 Refractive Indices for Two Waves of Different Frequencies.- 4.5.3 Refractive Index for a Standing Wave.- 4.6 Transient Processes Involving Doppler-Free Two-Photon Excitation.- 4.6.1 Free Induction Transients.- 4.6.2 Transients in the Driven Regime.- References.- 5. Coherent Excitation of Multilevel Systems by Laser Light.- 5.1 Multilevel Molecular Systems.- 5.1.1 The Schrodinger Equation for Multilevel Systems in the Rotating-Wave Approximation.- 5.1.2 "Quasi-Energy" or "Dressed-States" Approach for Multilevel Systems.- Constant Optical Electric Field.- Adiabatic Switching on of the Field.- 5.2 Interaction of Equidistant Nondegenerate Multilevel Systems with a Quasi-Resonant Field.- 5.2.1 Analytical Solutions for an Exactly Resonant Field.- Harmonic Oscillator.- Infinite System with Equal Dipole Moments.- A System with Decreasing Dipole Moments.- N-Level System with Equal Dipole Moments.- 5.2.2 Does Resonance Always Result in Effective Excitation?.- 5.2.3 Nonexact Resonance and Its Compensation by Power Broadening.- Step-Function Laser Pulse.- Adiabatically Switched-On Pulse.- General Estimates for Maximum Detuning.- 5.3 Interaction of Nonequidistant Multilevel Systems with a Quasi-Resonant Field.- 5.3.1 Multiphoton Resonances.- Rabi Frequency for Multiphoton Transitions.- 5.3.2 Numerical Calculations for Multilevel Systems.- 5.3.3 Dynamic Stark Effect and Frequency Shifts.- An Analytically Solvable Example.- General Approach to an Approximate Description of the Dynamics of Oscillator-Type Systems.- Upper Subsystem - Harmonic Oscillator.- Upper Subsystem with Equal Dipole Moments.- 5.3.4 "Leakage" from the Lower Quantum States into the Upper Levels.- 5.3.5 Excitation of Multiplet Systems with a Quasi-Continuous Structure of Transitions.- 5.4 Excitation of Triply-Degenerate Vibrational Modes of Spherical-Top Molecules.- 5.4.1 Vibrational States and Vibrational Hamiltonian.- Expression of the Hamiltonian in Terms of Cartesian Creation and Annihilation Operators.- Orders of Magnitude of Anharmonic Operators.- Final Form of the Vibrational Hamiltonian.- Comparison with Hecht's Hamiltonian.- The Spherical Vibrational Basis.- Eigenvalues of the Vibrational Hamiltonian.- 5.4.2 Physical Significance of Vibrational Anharmonic Parameters.- 5.4.3 Rotational States and Vibration-Rotation Bases.- Rigid-Rotor Wave Functions.- Coupled Vibration-Rotation Basis.- Symmetry-Adapted Vibration-Rotation Basis.- 5.4.4 Vibration-Rotation Hamiltonian.- 5.4.5 Dipole Transition Moments in Spherical-Top Molecules.- 5.4.6 Experimental Determination of the Anharmonic Parameters of the v3 Mode of SF6.- Effective-State Models for Molecular Multiphoton Calculations.- Absorption Strength of an Ensemble of Two-Level Systems.- Effective-State Equations of Motion.- Dipole Transition Moments Between Effective States.- Calculation of Degeneracies and Transition Strengths.- 5.4.8 Calculation of Multiphoton Excitation Including a Thermal Distribution of Initial State.- 5.4.9 Numerical Calculations of Multiphoton Excitation of SF6.- References.- 6. Coherent Picosecond Interactions.- 6.1 Overview.- 6.2 Theory of Investigations.- 6.2.1 Excitation Process.- 6.2.2 Coherent Probing.- 6.3 Experimental.- 6.3.1 Generation of Ultrashort Laser Pulses.- 6.3.2 Coherent Excitation and Probing Techniques.- 6.4 Experimental Results and Discussion.- 6.4.1 Modes with Homogeneous Line Broadening.- 6.4.2 Modes with Discrete Substructure.- 6.4.3 Modes with Inhomogeneous Line Broadening.- 6.4.4 Vibrational Modes in Solids.- 6.5 Interaction Processes.- References.- 7. Coherent Raman Spectroscopy.- 7.1 Historical Background.- 7.1.1 Prehistory.- 7.1.2 The Tunable Laser Era.- 7.2 Theory.- 7.2.1 Extended Two-Level Model for Coherent Raman Spectroscopy.- 7.2.2 The Nonlinear Polarization.- Stimulated Raman Gain and Loss Spectroscopy, and the Raman Induced Kerr Effect.- Coherent Anti-Stokes and Coherent Stokes Raman Spectroscopy.- Four-Wave Mixing.- Photoacoustic Raman Spectroscopy.- 7.2.3 The Nonlinear Susceptibility Tensor.- 7.2.4 Doppler Broadening.- 7.2.5 Symmetry Considerations.- 7.2.6 Relationship Between xR and the Spontaneous Cross Section.- 7.2.7 The Coherent Raman Signal.- 7.2.8 Focusing Considerations.- 7.2.9 Accentric Crystals and Polaritons.- 7.2.10 Resonant Effects and Absorbing Samples.- 7.3 Experimental Techniques.- 7.3.1 CARS in Liquids and Solids.- 7.3.2 CARS in Gases: Pulsed Laser Techniques.- 7.3.3 Multiplex CARS.- 7.3.4 CW CARS.- 7.3.5 Nonlinear Ellipsometry.- 7.3.6 Raman Induced Kerr Effect Spectroscopy (RIKES).- 7.3.7 Optical Heterodyne Detected RIKES.- 7.3.8 Stimulated Raman Gain and Loss Spectroscopy.- 7.3.9 Four-Wave Mixing.- 7.3.10 Signals, Noise and Sensitivity.- 7.3.11 Signal Enhancement with Interferometers, Intra-Cavity Techniques and Multipass Cells.- 7.4 Applications.- 7.4.1 Combustion Diagnostics: Concentration and Temperature Measurement.- 7.4.2 Raman Cross Section and Nonlinear Susceptibility Measurements.- 7.4.3 High-Resolution Molecular Spectroscopy.- 7.4.4 Raman Spectra of Fluorescent and Resonant Samples.- 7.4.5 Polariton Dispersion: Spectroscopy in Momentum Space.- 7.4.6 Low Frequency Modes.- 7.4.7 Vibrational and Rotational Relaxation Measurements.- 7.5 Conclusions.- References.- Additional References with Titles.
by "Nielsen BookData"