Non-linear oscillations
著者
書誌事項
Non-linear oscillations
(The Oxford engineering science series, 10)
Clarendon Press, 1988
2nd ed
- pbk.
- タイトル別名
-
Nichtlineare Schwingungen
大学図書館所蔵 全30件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Translation of: Nichtlineare Schwingungen
Includes bibliographies and indexes
内容説明・目次
内容説明
In this book, systems described in terms of non-linear ordinary differential equations are treated. An attempt is made to convey to engineers and physicists the basic ideas of the dynamic behaviour of non-linear systems and to provide a view of some of the phenomena and solution methods in non-linear oscillations. In this revised edition the author has updated the book, added a chapter on optimal control and new material on bifurcation theory and Hopf's theorem. Applications of the theory may be found not only in classical mechanics, but also in electronics, communications, biology and other branches of science.
目次
- Part 1 The mathematical pendulum as an illustration of linear and non-linear oscillations - systems which are similar to a simple linear oscillator: Undamped free oscillations of the pendulum
- damped free oscillations
- forced oscillations. Part 2 Liapounov stability theory and bifurcations: The concept of Liapounov stability
- the direct method of Liapounov
- stability by the first approximation
- the Poincare map
- the critical case of a conjugate pair of eigenvalues
- simple bifurcation of equilibria and the Hopf bifurcation. Part 3: Self-excited oscillations in mechanical and electrical systems
- analytical approximation methods for the computation of self-excited oscillations
- analytical criteria for the existence of limit cycles
- forced oscillations in self-excited systems
- self-excited oscillations in systems with several degrees of freedom
- Part 4 Hamiltonian systems: Hamiltonian differential equations in mechanics
- canonical transformations
- the Hamilton-Jacobi differential equation
- canonical transformations and the motion
- perturbation theory
- Part 5 Introduction to the theory of optimal control: Control problems, controllability
- the Pontryagin maximum principle
- transversality conditions and problems with target sets
- canonical perturbation theory in optimal control.
「Nielsen BookData」 より