On the foundations of combinatorial theory : combinatorial geometries
Author(s)
Bibliographic Information
On the foundations of combinatorial theory : combinatorial geometries
M.I.T. Press, c1970
Prelim. ed
- : pbk
Available at / 36 libraries
-
Hokkaido University, Library, Graduate School of Science, Faculty of Science and School of Science図書
DC19:512.5/C8520026207448
-
No Libraries matched.
- Remove all filters.
Note
Includes a bibliography
Description and Table of Contents
Description
It has been clear within the last ten years that combinatorial geometry, together with its order-theoretic counterpart, the geometric lattice, can serve to catalyze the whole field of combinatorial theory, and a major aim of this book, now available in a preliminary edition, is to present the theory in a form accessible to mathematicians working in disparate subjects.Earlier studies have been one-sided or restricted in their point of view; they were motivated primarily by the desire to extend the classical theory of graphs, or were lattice-theoretic approaches confined to axiomatics and algebraic dependence. These approaches largely ignored the original geometric motivations.The present work brings all these aspects together in order to emphasize the many-sidedness of combinatorial geometry, and to point up the unifying role it may well play in current developments in combinatorics and its applications.The book defines the axiomatics of combinatorial geometry, describes a variety of geometrical examples, and discusses the notion of a strong map between geometries. In addition, there is a brief presentation of coordinatization theory and a sketch of two important lines of future work, the "critical problem" and matching theory. The full chapter titles are given below."Contents: " 1. Introduction. 2. Geometrics and Geometric Lattices. 3. Six Classical Examples. 4. Span, Bases, Bonds, Dependence, and Circuits. 5. Cryptomorphic Versions of Geometry. 6. Simplicial Geometries. 7. Semimodular Functions. 8. A Glimpse of Matching Theory. 9. Maps. 10. The Extension Theorem. 11. Orthogonality. 12. Factorization of Relatively Complemented Lattices. 13. Factorization of Geometries. 14. Connected Sets. 15. Representation. 16. The Critical Problem. 17. Bibliography.
by "Nielsen BookData"