Semiempirical methods of electronic structure calculation
Author(s)
Bibliographic Information
Semiempirical methods of electronic structure calculation
(Modern theoretical chemistry, v. 7-8)
Plenum Press, c1977
- pt. A
- pt. B
Available at / 41 libraries
-
Kanazawa University Library自然図自動書庫
pt. A431.08:M689:78312-15273-3,
pt. B431.08:M689:88312-15272-5 -
Science and Technology Library, Kyushu University
pt. A068582480061934,
pt. B068582480061946, Pt. B : Applications068222181001017, Pt. A : Techniques068222182000435 -
Yukawa Institute for Theoretical Physics, Kyoto University基物研
Pt. A : TechniquesD3||SEM2313332,
Pt. B : ApplicationsD3||SEM2347372 -
pt. A : Techniques7-4||S||252370282,
pt. B : Applications7-4||S||252370283 -
pt. A431.1/Se,53/(A)/58-15188800191103,
pt. B431.1/Se,53/(B)/58-1518980019109X -
National Institutes of Natural Sciences Okazaki Library and Information Center図
Pt. A : Techniques431.19/SE53/A9106867212,
Pt. B : Applications431.19/SE53/B9106868210 -
Institute of Science Tokyo Suzukakedai Library
Pt. A431.19/Se/1214020564,
Pt. B431.19/Se/2214020572 -
The Institute for Solid State Physics Library. The University of Tokyo.図書室
pt.B431:M3:87230053634
-
Tokyo Metropolitan University Library
pt. A/430.8/MO13M/7003131861,
pt. B/430.8/MO13M/8003131870 -
Tokyo University of Agriculture and Technology Koganei Library
Pt. A : Techniques431||SP160125516,
Pt. B : Applications431||SP250051466 -
Pt. A : Techniques431.27||Se 16||100181848,
Pt. B : Applications431.27||Se 16||200181849 -
University of Toyama Library, Medical and Pharmaceutical Library図
pt. A431.1||S454S||PT.A12986024316,
pt. B431.1||S454S||PT.B12986024328 -
Nagaoka Universtiy of Technology Library
Pt. A : Techniques431.19-SE53-13030356,
Pt. B : Applications431.19-SE53-23030357 -
Nagoya University Library工化学生物
Pt. A : Techniques431.19||Se40712079,
Pt. B : Applications431.19||Se40712080 -
Hiroshima University Central Library, Interlibrary Loan
pt. A431.08:Mo-13:76000128866,
pt. B431.08:Mo-13:86000128867 -
Hokkaido University, Library, Graduate School of Science, Faculty of Science and School of Science研究室
pt. B540/M722020970396
-
Ritsumeikan University Main Library
Pt. A : Techniques7110221738,
Pt. B : Applications7110221740 -
No Libraries matched.
- Remove all filters.
Note
Includes bibliographies and indexes
Contents of Works
- pt. A. Techniques
- pt. B. Applications
Description and Table of Contents
- Volume
-
pt. A ISBN 9780306335075
Description
Table of Contents
- 1. Huckel Theory and Topology.- 1. Introduction.- 2. Equivalence between Hiickel Theory and the Graph Spectral Theory of Conjugated Molecules.- 3. Two-Color Problem in Hiickel Theory.- 4. Relationship between the Topology of Conjugated Systems and Their Corresponding Characteristic Polynomials.- 4.1. Characteristic Polynomial of a Conj ugated Molecule.- 4.2. Coulson-Sachs Graphical Method for the Enumeration of Coefficients of the Characteristic Polynomial.- 4.3. Summary of Some Results Obtained from the Coulson-Sachs Method.- 5. Topological Formulas for Hiickel Energy and ?-Resonance Energy.- 5.1. Topological Formula for ?-ElectronEneigy.- 5.2. Topological Formula for ?-Resonance Energy.- 6. Conclusions.- References.- 2. The Neglect-of-Differential-Overlap Methods of Molecular Orbital Theory.- 1. Background.- 1.1. Methodology.- 1.2. The Central Field Approximation and the Self-Consistent Field Procedure.- 1.3. The Form of the Basis Set.- 1.4. The ZDO Approximation.- 2. The NDO Methods.- 2.1. The CNDO Methods.- 2.2. The (M)INDO Methods.- 2.3. The (P)NDDO Methods.- References.- 3. The PCILO Method.- 1. Main Features of the PCILO Method.- 1.1. Advantages of the Localized MOs.- 1.2. Perturbative CI.- 1.3. Keeping the Simplicity of the CNDO Hamiltonian at the CI Level.- 1.4. Comparison with the Valence Bond Method.- 2. Derivation of the PCILO-CNDO Energy Contributions.- 2.1. Choice of the Localized MOs.- 2.2. The Fully Localized Determinant Energy.- 2.3. Second-Order Contributions.- 2.4. Third-Order Contributions.- 2.5. Improvement of Bond Polarities.- 3. Efficiency and Limits of the Method
- Applications and Extensions.- 3.1. Nature of Possible Applications.- 3.2. Time and Memory Requirements
- the Differential Scheme.- 3.3. Limitations of the Method.- 3.4. Brief Review of Applications to Ground-State Conformational Problems.- 3.5. Extensions of the Method.- 4. Concluding Remarks.- References.- 4. The X? Method.- 1. Introduction.- 1.1. The Origins of the Xa Method.- 1.2. Early Applications of the Method.- 1.3. Advantages and Disadvantages.- 2. Derivation of the Equations.- 2.1. The Energy Functional.- 2.2. The Slater Transition State.- 2.3. The Virial and Hellmann-Feynman Theorems.- 2.4. The Choice of Parameters.- 2.5. The Spin-Polarized and Relativistic Modifications.- 3. Applications of the Method.- 3.1. Atomic Calculations.- 3.2. Molecular Calculations.- 4. Comparison with Other Methods.- References.- 5. The Consistent Force Field and Its Quantum Mechanical Extension.- 1. Introduction.- 1.1. Efficiency.- 1.2. Reliability.- 1.3. Flexibility.- 2. Empirical Potential Functions.- 3. The Consistent Force Field (CFF) Method.- 3.1. The Philosophy of the CFF Method.- 3.2. The Refinement of the Potential Function Parameters.- 3.3. The Advantage of the Cartesian Representation.- 4. Quantum Mechanical Extension of the CFF Method to Ground and Excited States of Conjugated Molecules.- 4.1. Potential Surf aces for Conjugated Molecules.- 4.2. The Refinement of the Empirical Integrals.- 5. Applications.- 5.1. Energies, Conformations, and Vibrations of Large Molecules.- 5.2. Crystal Packing, Crystal Geometry, Lattice Dynamics, and Excimer Formation.- 5.3. Excited-State Geometries, Vibronic Interactions, and Photochemistry.- 5.4. Resonance Raman Intensities of Biologically Important Molecules.- 5.5. Classical Trajectories and Molecular Dynamics.- 6. Concluding Remarks.- References.- 6. Diatomics-in-Molecules.- 1. Introduction.- 2. Formulationof the Method.- 2.1. Molecular Energies and Wave Functions.- 2.2. Polyatomic Basis Functions.- 2.3. Partitioning of the Hamiltonian.- 2.4. Fundamental Approximation of DIM.- 2.5. Ab Initio DIM Theory.- 2.6. Semiempirical DIM Theory.- 3. Application of the Method.- 3.1. Selection of Basis Functions.- 3.2. Spin Coupling.- 3.3. Fragment Information.- 3.4. Overlap.- 4. Assessmentof the Method.- 4.1. Practicality.- 4.2. Analysis of Basic Approximations.- 4.3. Comparison with Accurate Results.- 4.4. Transferability.- 5. Properties Other Than Energy.- 6. Polyatomics-in-Molecules.- 7. Conclusions.- References.- 7. Theoretical Basis for Semiempirical Theories.- 1. Introduction.- 1.1. Division between Semiempirical and Ab Initio Fields.- 1.2. Need for a Theoretical Basis of Semiempirical Theories.- 2. Semiempirical Theories: Background.- 2.1. Traditional Formulation.- 2.2. Ambiguities and Difficulties.- 2.3. Earlier Derivations.- 3. The True Effective Valence Shell Hamiltonian.- 3.1. Basic Concepts.- 3.2. Derivation of ?v.- 3.3. Properties of ?v.- 4. Extraction of True Parameters.- 4.1. The True Parameters.- 4.2. Nonclassical Terms.- 4.3. Dynamic Variable Electronegativity.- 4.4. Properties Other Than Energies.- 4.5. The Chemical Orbitals.- 4.6. Extraction of the ??.- 5. Approximate Evaluation of True Parameters.- 5.1. Ab Initio Evaluation of the Correlation Parts of ?v.- 5.2. Difiuseness of ?* Valence States.- 5.3. ?v for Twisted Olefins.- 6. Model Pseudopotentials.- 6.1. The Usual Pseudopotential Equations.- 6.2. Exact Equations for the Valence Electrons.- 6.3. The Many-Electron Case.- 7. Discussion.- References.- Author Index.- Molecule Index.
- Volume
-
pt. B ISBN 9780306335082
Description
Table of Contents
- 1. Ground-State Potential Surfaces and Thermochemistry.- 1. Introduction.- 2. Macroscopic Properties from Molecular Calculations.- 2.1. A Scheme for Thermodynamic Parameters.- 2.2. The Need for Geometry Calculations.- 2.3. Statistical Thermodynamic Formalism.- 2.4. Activation Parameters.- 2.5. The Zero-Point Vibrational Correction.- 2.6. The Partition Function.- 3. Semiempirical Molecular Orbital Theory for Closed Shells.- 3.1. The Nature of Semiempirical Theory.- 3.2. Parametrization.- 3.3. Strengths and Limitations for Potential Surface Calculations.- 4. Exploring Potential Energy Surfaces.- 4.1. The Size and Shape of Potential Surfaces.- 4.2. Geometry Optimization.- 4.3. Force Constants.- 5. Selected Results and Comparisons.- 5.1. Introduction.- 5.2. Molecular Geometries.- 5.3. Energies of Equilibrium States.- 5.4. Activation Parameters.- 5.5. Vibrational Frequencies.- 6. Conclusions and an Opinion.- References.- 2. Electronic Excited States of Organic Molecules.- 1. Introduction.- 2. The Hamiltonian Operator.- 3. The Zeroth-Order Approximation.- 4. The Electronic Wave Function.- 4.1. The All-Valence-Electron Approximation.- 4.2. The SCF Procedure.- 4.3. The Trial Functions.- 4.4. The ZDO Approximation.- 4.5. The Semiempirical Approximations.- 4.6. Comparison of Various Methods.- 5. The Interaction of Matter and Electromagnetic Fields.- 5.1. Transition Moments.- 5.2. Photoelectron Cross Sections.- 6. Spin-Orbit and Spin-Spin Coupling.- 6.1. Spin-Orbit Coupling.- 6.2. Spin-Spin Coupling.- 7. Vibrationally Induced Transitions.- 7.1. Herzberg-Teller Theory.- 7.2. Born-Oppenheimer Breakdown Theory.- 8. Application of ZDO Methods.- 8.1. Simple Organic Compounds.- 8.2. Inorganic Compounds.- 8.3. Interacting Nonplanar 7r-Electron Systems.- 8.4. TripletStates.- 8.5. Free Radicals and Doublet States
- Photoelectron Spectra.- 8.6. Rydberg Transitions.- 8.7. Treatment of d Orbitals.- 8.8. Geometry of Excited States.- 8.9. Spin-Orbit, Spin-Spin, and Vibronic Coupling.- 8.10. Ionization Potentials.- 8.11. Dipole Moments and Polarizabilities.- 8.12. Miscellaneous Studies.- 9. Conclusions.- References.- 3. Photochemistry Josef Michl.- 1. Introduction.- 2. Photochemical Processes.- 3. Semiempirical Methods.- 3.1. Model Hamiltonians.- 3.2. Solving the Models.- 4. Examples of Application.- 4.1. Phototautomerism.- 4.2. Electrocyclic Reactions.- 5. Summary and Outlook.- References.- 4. Approximate Methods for the Electronic Structures of Inorganic Complexes.- 1. Inorganic Complexes Contrasted to Organic Molecules.- 2. TheOrbitals.- 3. The Ligand Field and the Crystal Field Methods.- 4. Koopmans' Theorem.- 5. Spin-Orbit Coupling.- 6. NonempiricalCNDO and INDO Methods.- 7. Semiempirical CNDO and INDO Methods.- 8. The Excited States.- 9. The Crystal Field Theory.- 10. Extended Huckel Theory. Angular Overlap Model.- 11. An Example, Ni(CN)4~. Conclusions.- References.- 5. Approximate Molecular Orbital Theory of Nuclear and Electron Magnetic Resonance Parameters.- 1. Introduction.- 2. Magnetic Resonance Parameters.- 3. Molecular Quantum Mechanics.- 3.1. Molecular Orbital Theory.- 3.2. Approximate Molecular Orbital Theory.- 3.3. Perturbation Theory.- 4. NMR Shielding Constants and Chemical Shifts.- 4.1. Quantum Mechanical Development of ?N.- 4.2. Calculation of Shielding Constants.- 5. NMR Nuclear Spin Coupling Constants.- 5.1. Quantum Mechanical Development of KMN.- 5.2. The Fermi Contact Term.- 5.3. The Orbital and Dipolar Terms.- 5.4. Calculations of JMN.- 6. ESRg-Tensors.- 7. ESR Electron-Nuclear Hyperfine Tensors.- 7.1. Quantum Mechanical Development of TN.- 7.2. Isotropic Hyperfine Coupling.- 7.3. Calculations of Isotropic Hyperfine Constants.- 7.4. Anisotropic Hyperfine Coupling.- 7.5. Calculations of Anisotropic Hyperfine Constants.- References.- 6. The Molecular Cluster Approach to Some Solid-State Problems.- 1. Introduction.- 1.1. Perfect Crystalline Solids and the Bloch Theorem.- 1.2. Imperfect Solids and the Breakdown of B loch's Theorem.- 2. Solid-State Theory Approaches to Surface Problems.- 2.1. The Perfect Surface.- 2.2. Surf ace-Adsorbate Interactions.- 3. Molecular Cluster Approach to Surface Problems.- 3.1. Nonmetals.- 3.2. MetalClusters.- 3.3. Metals and Adsorbates.- 4. Summary.- References.- 7. Electron Scattering Donald G. Truhlar.- 1. Introduction.- 2. Explicit Inclusion of Electronic Excitations.- 2.1. Expansions Including Free Waves.- 2.2. L2 Expansions.- 3. Neglect of Electronic Excitation Except for Final State.- 3.1. Strong-Coupling, Static-Exchange, and Distorted-Wave Approximations.- 3.2. High-Energy Approximations.- 4. Inclusion of Effect of Omitted Electronic States by Approximate Polarization Potentials.- References.- Author Index.- Molecule Index.
by "Nielsen BookData"