Population harvesting : demographic models of fish, forest, and animal resources
著者
書誌事項
Population harvesting : demographic models of fish, forest, and animal resources
(Monographs in population biology, 27)
Princeton University Press, 1989
- : pbk
大学図書館所蔵 件 / 全22件
-
該当する所蔵館はありません
- すべての絞り込み条件を解除する
注記
Bibliography: p. 361-380
Includes index
内容説明・目次
- 巻冊次
-
ISBN 9780691085159
内容説明
Whether in felling trees for wood, rearing insects for biological control, or culling animals for conservation purposes, efficient management of biological systems requires quantitative analysis of population growth and harvesting policies. Aiming to encourage the exchange of ideas among scientists involved in the management of fisheries, wildlife, forest stands, and pest control, the authors of this work present a general framework for modeling populations that reproduce seasonally and that have age or stage structure as an essential component of management strategy.
The book represents the first time that examples from such diverse areas of biological resource management have been brought together in a unified modeling framework using the standard notation of mathematical systems theory. In addition, the authors combine a nonlinear extension of Leslie matrix theory and certain linear elements, thereby permitting interesting analytical results and the creation of compact, realistic simulation models of resource systems.
- 巻冊次
-
: pbk ISBN 9780691085166
内容説明
Whether in felling trees for wood, rearing insects for biological control, or culling animals for conservation purposes, efficient management of biological systems requires quantitative analysis of population growth and harvesting policies. Aiming to encourage the exchange of ideas among scientists involved in the management of fisheries, wildlife, forest stands, and pest control, the authors of this work present a general framework for modeling populations that reproduce seasonally and that have age or stage structure as an essential component of management strategy. The book represents the first time that examples from such diverse areas of biological resource management have been brought together in a unified modeling framework using the standard notation of mathematical systems theory. In addition, the authors combine a nonlinear extension of Leslie matrix theory and certain linear elements, thereby permitting interesting analytical results and the creation of compact, realistic simulation models of resource systems.
「Nielsen BookData」 より