Biological delay systems : linear stability theory
著者
書誌事項
Biological delay systems : linear stability theory
(Cambridge studies in mathematical biology, 8)
Cambridge University Press, 1989
大学図書館所蔵 件 / 全25件
-
該当する所蔵館はありません
- すべての絞り込み条件を解除する
注記
Bibliography: p. 227-232
Includes index
内容説明・目次
内容説明
In studying the dynamics of populations, whether of animals, plants or cells, it is crucial to allow for intrinsic delays, due to such things as gestation, maturation or transport. This book is concerned with one of the fundamental questions in the analysis of the effect of delays, namely determining whether they effect the stability of steady states. The analysis is presented for one or two such delays treated both as discrete, where an event which occurred at a precise time in the past has an effect now, and distributed, where the delay is averaged over the population's history. Both of these types occur in biological contexts. The method used to tackle these questions is linear stability analysis which leads to an understanding of the local stability. By avoiding global questions, the author has kept the mathematical prerequisites to a minimum, essentially advanced calculus and ordinary differential equations.
目次
- Preface
- 1. How delays arise and what effects they have
- 2. Ordinary differential equations: the polynomial characteristic equation
- 3. Functional differential equations: the transcendental characteristic equation
- 4. Hurwitz polynomials
- 5. First- and second-order systems with a discrete delay
- 6. Higher-order systems, and systems with two delays
- 7. Reducing a discrete delay problem to one with a polynomial characteristic equation
- 8. Stability independent of delay
- 9. Distributed delay
- 10. Reducible delays and linear subsystems
- Appendices
- Solutions to exercises
- References
- Index.
「Nielsen BookData」 より