Hypergraphs : combinatorics of finite sets
著者
書誌事項
Hypergraphs : combinatorics of finite sets
(North-Holland mathematical library, v. 45)
North Holland, 1989
- タイトル別名
-
Hypergraphes: combinatoires des ensembles finis
大学図書館所蔵 件 / 全57件
-
該当する所蔵館はありません
- すべての絞り込み条件を解除する
注記
Translation of: Hypergraphes
Bibliography: p. [237]-255
Includes index
内容説明・目次
内容説明
Graph Theory has proved to be an extremely useful tool for solving combinatorial problems in such diverse areas as Geometry, Algebra, Number Theory, Topology, Operations Research and Optimization. It is natural to attempt to generalise the concept of a graph, in order to attack additional combinatorial problems. The idea of looking at a family of sets from this standpoint took shape around 1960. In regarding each set as a ``generalised edge'' and in calling the family itself a ``hypergraph'', the initial idea was to try to extend certain classical results of Graph Theory such as the theorems of Turan and Koenig. It was noticed that this generalisation often led to simplification; moreover, one single statement, sometimes remarkably simple, could unify several theorems on graphs. This book presents what seems to be the most significant work on hypergraphs.
目次
1. General Concepts. Dual Hypergraphs. Degrees. Intersecting Families. The Coloured Edge Property and Chvatal's Conjecture. The Helly Property. Section of a Hypergraph and the Kruskal-Katona Theorem. Conformal Hypergraphs. Representative Graphs.
2. Transversal Sets and Matchings. Transversal Hypergraphs. The Coefficients r and r'. r-Critical Hypergraphs. The Koenig Property.
3. Fractional Transversals. Fractional Transversal Number. Fractional Matching of a Graph. Fractional Transversal Number of a Regularisable Hypergraph. Greedy Transversal Number. Ryser's Conjecture. Transversal Number of Product Hypergraphs.
4. Colourings. Chromatic Number. Particular Kinds of Colourings. Uniform Colourings. Extremal Problems Related to the Chromatic Number. Good Edge-Colourings of a Complete Hypergraph. An Application to an Extremal Problem. Kneser's Problem.
5. Hypergraphs Generalising Bipartite Graphs. Hypergraphs without Odd Cycles. Unimodular Hypergraphs. Balanced Hypergraphs. Arboreal Hypergraphs. Normal Hypergraphs. Mengerian Hypergraphs. Paranormal Hypergraphs.
Appendix: Matchings and Colourings in Matroids.
References.
「Nielsen BookData」 より