Algebras of pseudodifferential operators
著者
書誌事項
Algebras of pseudodifferential operators
(Mathematics and its applications, . Soviet series ; v. 43)
Kluwer Academic Publishers, c1989
- タイトル別名
-
Algebry psevdodifferent︠s︡ialʹnykh operatorov
Алгебры псевдодифференциальных операторов
大学図書館所蔵 全34件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Translation of: Алгебры псевдодифференциальных операторов
Includes bibliographical references
内容説明・目次
内容説明
One service mathematics has rendered the 'Et moi, ..., si j'avait su comment en revenir, human race. It has put common sense back je n'y serais point alle.' where it belongs, on the topmost shelf next Jules Verne to the dusty canister labelled 'discarded non- sense'. The series is divergent; therefore we may be Eric 1'. Bell able to do something with it. O. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non- linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics ...'; 'One service logic has rendered com- puter science ...'; 'One service category theory has rendered mathematics ...'. All arguably true. And all statements obtainable this way form part of the raison d'etre of this series.
目次
1. Integral transforms on a sphere.- 1. The generalized kernels (xy)?+/-, (+/-xy + iO)?.- 2. The operator E(?), its relation with the Fourier and Mellin transform.- 3. The action of E(?) on spherical functions.- 4. Operators related with the transform E(?).- 5. The spaces Hs(?, Sn-1). The operator E(?) on the spaces Hs(?, Sn-1).- 6. An analog of the Paley-Wiener theorem for the operator E(?).- 2. The Fourier transform and convolution operators on spaces with weighted norms.- 1. The spaces H?s(?n).- 2. The Fourier transform on the spaces Hs?(?n).- 3. Convolution operator on the spaces Hs?(?n).- 4. The spaces Hs?(?m,?m-n).- 5. Transversal operators and special representations.- 6. Estimates for the convolution operator on the spaces H?s(?m, ?m-n).- 3. Meromorphic pseudodifferential operators.- 1. Canonical meromorphic pseudodifferential operators.- 2. Operations on canonical meromorphic pseudodifferential operators.- 3. General meromorphic pseudodifferential operators.- 4. Traces of meromorphic pseudodifferential operators.- 5. Meromorphic pseudodifferential operators on strongly oscillating functions.- 6. Estimates for meromorphic pseudodifferential operators.- 7. Periodic meromorphic pseudodifferential operators.- 8. Change of variables in meromorphic pseudodifferential operators.- 4. Pseudodifferential operators with discontinuous symbols on manifolds with conical singularities.- 1. Pseudodifferential operators on ?n.- 2. Pseudodifferential operators on a conic manifold.- 3. Pseudodifferential operators on manifolds with conical points.- 4. Algebras generated by pseudodifferential operators of order zero.- 5. The spectrum of a C* -algebra of pseudodifferential operators with discontinuous symbols on a closed manifold.- 1. Results from the theory* of C* -algebras.- 2. The spectrum of a C* -algebra of pseudodifferential operators with discontinuities of the first kind in the symbols on a smooth closed manifold (statement of the main theorem).- 3. Representations of the algebra $$
\mathfrak{G}
$$(?) generated by the operators E(?)-1F(o, ?)E(?).- 4. Representations of an algebra $$
\mathfrak{G}
$$(lx).- 5. Proof of theorem 2.1.- 6. Ideals in the algebra of pseudodifferential operators with discontinuous symbols.- 7. Spectra of C* -algebras of pseudodifferential operators on a manifold with conical points.- 8. The spectrum of a C* -algebra of pseudodifferential operators with oscillating symbols.- 6. The spectrum of a C* -algebra of pseudodifferential operators on a manifold with boundary.- 1. The algebras $$
\mathfrak{G}
$$c(?).- 2. The algebras $$
\mathfrak{G}
$$(?).- 3. The algebras $$
\mathfrak{G}
$$c(l?).- 4. The algebras $$
\mathfrak{G}
$$(l?).- 5. The spectrum of an algebra of pseudodifferential operators on a manifold with boundary.- Bibliographical sketch.- References.
「Nielsen BookData」 より