Differential geometry in the large : seminar lectures, New York University, 1946 and Stanford University, 1956
著者
書誌事項
Differential geometry in the large : seminar lectures, New York University, 1946 and Stanford University, 1956
(Lecture notes in mathematics, 1000)
Springer-Verlag, c1989
2nd ed.
- : U.S.
- : Germany
大学図書館所蔵 全37件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references
収録内容
- Selected topics in geometry : New York University, 1946 / notes by Peter Lax
- Differential geometry in the large : Stanford University, 1956 / notes by J.W. Gray
内容説明・目次
内容説明
These notes consist of two parts: Selected in York 1) Geometry, New 1946, Topics University Notes Peter Lax. by Differential in the 2) Lectures on Stanford Geometry Large, 1956, Notes J.W. University by Gray. are here with no essential They reproduced change. Heinz was a mathematician who mathema- Hopf recognized important tical ideas and new mathematical cases. In the phenomena through special the central idea the of a or difficulty problem simplest background is becomes clear. in this fashion a crystal Doing geometry usually lead serious allows this to to - joy. Hopf's great insight approach for most of the in these notes have become the st- thematics, topics I will to mention a of further try ting-points important developments. few. It is clear from these notes that laid the on Hopf emphasis po- differential Most of the results in smooth differ- hedral geometry. whose is both t1al have understanding geometry polyhedral counterparts, works I wish to mention and recent important challenging. Among those of Robert on which is much in the Connelly rigidity, very spirit R. and in - of these notes (cf. Connelly, Conjectures questions open International of Mathematicians, H- of gidity, Proceedings Congress sinki vol. 1, 407-414) 1978, .
目次
Selected Topics in Geometry.- The Euler Characteristic and Related Topics.- Selected Topics in Elementary Differential Geometry.- The Isoperimetric Inequality and Related Inequalities.- The Elementary Concept of Area and Volume.- Differential Geometry in the Large.- Differential Geometry of Surfaces in the Small.- Some General Remarks on Closed Surfaces in Differential Geometry.- The Total Curvature (Curvatura Inteqra) of a Closed Surface with Riemannian Metric and Poincare's Theorem on the Singularities of Fields of Line Elements.- Hadamard's Characterization of the Ovaloids.- Closed Surfaces with Constant Gauss Curvature (Hilbert's Method) - Generalizations and Problems - General Remarks on Weinqarten Surfaces.- General Closed Surfaces of Genus O with Constant Mean Curvature - Generalizations.- Simple Closed Surfaces (of Arbitrary Genus) with Constant Mean Curvature - Generalizations.- The Congruence Theorem for Ovaloids.- Singularities of Surfaces with Constant Negative Gauss Curvature.
「Nielsen BookData」 より