Linear monotone operators
Author(s)
Bibliographic Information
Linear monotone operators
(Nonlinear functional analysis and its applications / Eberhard Zeidler, 2/A)
Springer-Verlag, c1990
- : us
- : gw
Available at / 80 libraries
-
Library, Research Institute for Mathematical Sciences, Kyoto University数研
ZEI||1||3-2/A(Z)90006985
-
Kobe University Library for Science and Technology
: us413-5-20//2/AH038900004507*,
413-5-20//2A-B030009801676 -
Research Institute for Economics & Business Administration (RIEB) Library , Kobe University図書
: us517-137//2/1s081000081931*
-
Faculty of Textile Science and Technology Library, Shinshu University研究室
: us415.2:Z22810000808
-
Hokkaido University, Library, Graduate School of Science, Faculty of Science and School of Science図書
DC19:515.7/Z342070143220
-
No Libraries matched.
- Remove all filters.
Note
Includes bibliographies
Description and Table of Contents
Description
Table of Contents
- to the Subject.- 18 Variational Problems, the Ritz Method, and the Idea of Orthogonality.- 18.1. The Space C0?(G) and the Variational Lemma.- 18.2. Integration by Parts.- 18.3. The First Boundary Value Problem and the Ritz Method.- 18.4. The Second and Third Boundary Value Problems and the Ritz Method.- 18.5. Eigenvalue Problems and the Ritz Method.- 18.6. The Hoelder Inequality and its Applications.- 18.7. The History of the Dirichlet Principle and Monotone Operators.- 18.8. The Main Theorem on Quadratic Minimum Problems.- 18.9. The Inequality of Poincare-Friedrichs.- 18.10. The Functional Analytic Justification of the Dirichlet Principle.- 18.11. The Perpendicular Principle, the Riesz Theorem, and the Main Theorem on Linear Monotone Operators.- 18.12. The Extension Principle and the Completion Principle.- 18.13. Proper Subregions.- 18.14. The Smoothing Principle.- 18.15. The Idea of the Regularity of Generalized Solutions and the Lemma of Weyl.- 18.16. The Localization Principle.- 18.17. Convex Variational Problems, Elliptic Differential Equations, and Monotonicity.- 18.18. The General Euler-Lagrange Equations.- 18.19. The Historical Development of the 19th and 20th Problems of Hilbert and Monotone Operators.- 18.20. Sufficient Conditions for Local and Global Minima and Locally Monotone Operators.- 19 The Galerkin Method for Differential and Integral Equations, the Friedrichs Extension, and the Idea of Self-Adjointness.- 19.1. Elliptic Differential Equations and the Galerkin Method.- 19.2. Parabolic Differential Equations and the Galerkin Method.- 19.3. Hyperbolic Differential Equations and the Galerkin Method.- 19.4. Integral Equations and the Galerkin Method.- 19.5. Complete Orthonormal Systems and Abstract Fourier Series.- 19.6. Eigenvalues of Compact Symmetric Operators (Hilbert-Schmidt Theory).- 19.7. Proof of Theorem 19.B.- 19.8. Self-Adjoint Operators.- 19.9. The Friedrichs Extension of Symmetric Operators.- 19.10. Proof of Theorem 19.C.- 19.11. Application to the Poisson Equation.- 19.12. Application to the Eigenvalue Problem for the Laplace Equation.- 19.13. The Inequality of Poincare and the Compactness Theorem of Rellich.- 19.14. Functions of Self-Adjoint Operators.- 19.15. Application to the Heat Equation.- 19.16. Application to the Wave Equation.- 19.17. Semigroups and Propagators, and Their Physical Relevance.- 19.18. Main Theorem on Abstract Linear Parabolic Equations.- 19.19. Proof of Theorem 19.D.- 19.20. Monotone Operators and the Main Theorem on Linear Nonexpansive Semigroups.- 19.21. The Main Theorem on One-Parameter Unitary Groups.- 19.22. Proof of Theorem 19.E.- 19.23. Abstract Semilinear Hyperbolic Equations.- 19.24. Application to Semilinear Wave Equations.- 19.25. The Semilinear Schroedinger Equation.- 19.26. Abstract Semilinear Parabolic Equations, Fractional Powers of Operators, and Abstract Sobolev Spaces.- 19.27. Application to Semilinear Parabolic Equations.- 19.28. Proof of Theorem 19.I.- 19.29. Five General Uniqueness Principles and Monotone Operators.- 19.30. A General Existence Principle and Linear Monotone Operators.- 20 Difference Methods and Stability.- 20.1. Consistency, Stability, and Convergence.- 20.2. Approximation of Differential Quotients.- 20.3. Application to Boundary Value Problems for Ordinary Differential Equations.- 20.4. Application to Parabolic Differential Equations.- 20.5. Application to Elliptic Differential Equations.- 20.6. The Equivalence Between Stability and Convergence.- 20.7. The Equivalence Theorem of Lax for Evolution Equations.- Linear Monotone Problems.- 21 Auxiliary Tools and the Convergence of the Galerkin Method for Linear Operator Equations.- 21.1. Generalized Derivatives.- 21.2. Sobolev Spaces.- 21.3. The Sobolev Embedding Theorems.- 21.4. Proof of the Sobolev Embedding Theorems.- 21.5. Duality in B-Spaces.- 21.6. Duality in H-Spaces.- 21.7. The Idea of Weak Convergence.- 21.8. The Idea of Weak* Convergence.- 21.9. Linear Operators.- 21.10. Bilinear Forms.- 21.11. Application to Embeddings.- 21.12. Projection Operators.- 21.13. Bases and Galerkin Schemes.- 21.14. Application to Finite Elements.- 21.15. Riesz-Schauder Theory and Abstract Fredholm Alternatives.- 21.16. The Main Theorem on the Approximation-Solvability of Linear Operator Equations, and the Convergence of the Galerkin Method.- 21.17. Interpolation Inequalities and a Convergence Trick.- 21.18. Application to the Refined Banach Fixed-Point Theorem and the Convergence of Iteration Methods.- 21.19. The Gagliardo-Nirenberg Inequalities.- 21.20. The Strategy of the Fourier Transform for Sobolev Spaces.- 21.21. Banach Algebras and Sobolev Spaces.- 21.22. Moser-Type Calculus Inequalities.- 21.23. Weakly Sequentially Continuous Nonlinear Operators on Sobolev Spaces.- 22 Hilbert Space Methods and Linear Elliptic Differential Equations.- 22.1. Main Theorem on Quadratic Minimum Problems and the Ritz Method.- 22.2. Application to Boundary Value Problems.- 22.3. The Method of Orthogonal Projection, Duality, and a posteriori Error Estimates for the Ritz Method.- 22.4. Application to Boundary Value Problems.- 22.5. Main Theorem on Linear Strongly Monotone Operators and the Galerkin Method.- 22.6. Application to Boundary Value Problems.- 22.7. Compact Perturbations of Strongly Monotone Operators, Fredholm Alternatives, and the Galerkin Method.- 22.8. Application to Integral Equations.- 22.9. Application to Bilinear Forms.- 22.10. Application to Boundary Value Problems.- 22.11. Eigenvalue Problems and the Ritz Method.- 22.12. Application to Bilinear Forms.- 22.13. Application to Boundary-Eigenvalue Problems.- 22.14. Garding Forms.- 22.15. The Garding Inequality for Elliptic Equations.- 22.16. The Main Theorems on Garding Forms.- 22.17. Application to Strongly Elliptic Differential Equations of Order 2m.- 22.18. Difference Approximations.- 22.19. Interior Regularity of Generalized Solutions.- 22.20. Proof of Theorem 22.H.- 22.21. Regularity of Generalized Solutions up to the Boundary.- 22.22. Proof of Theorem 22.I.- 23 Hilbert Space Methods and Linear Parabolic Differential Equations.- 23.1. Particularities in the Treatment of Parabolic Equations.- 23.2. The Lebesgue Space Lp(0, T
- X) of Vector-Valued Functions.- 23.3. The Dual Space to Lp(0, T
- X).- 23.4. Evolution Triples.- 23.5. Generalized Derivatives.- 23.6. The Sobolev Space WP1 (0, T
- V, H).- 23.7. Main Theorem on First-Order Linear Evolution Equations and the Galerkin Method.- 23.8. Application to Parabolic Differential Equations.- 23.9. Proof of the Main Theorem.- 24 Hilbert Space Methods and Linear Hyperbolic Differential Equations.- 24.1. Main Theorem on Second-Order Linear Evolution Equations and the Galerkin Method.- 24.2. Application to Hyperbolic Differential Equations.- 24.3. Proof of the Main Theorem.
by "Nielsen BookData"