The commutant lifting approach to interpolation problems

書誌事項

The commutant lifting approach to interpolation problems

Ciprian Foias, Arthur E. Frazho

(Operator theory : advances and applications, v. 44)

Birkhäuser, 1990

  • : sz
  • : us

大学図書館所蔵 件 / 28

この図書・雑誌をさがす

注記

Includes bibliographical references and index

内容説明・目次

内容説明

Classical H~ interpolation theory was conceived at the beginning of the century by C. Caratheodory, L. Fejer and I. Schur. The basic method, due to Schur, in solving these problems consists in applying the Mobius transform to peel off the data. In 1967, D. Sarason encompassed these classical interpolation problems in a representation theorem of operators commuting with special contractions. Shortly after that, in 1968, B. Sz.- Nagy and C. Foias obtained a purely geometrical extension of Sarason's results. Actually, their result states that operators intertwining restrictions of co-isometries can be extended, by preserving their norm, to operators intertwining these co-isometries; starring with R. G. Douglas, P. S. Muhly and C. Pearcy, this is referred to as the commutant lifting theorem. In 1957, Z. Nehari considered an L ~ interpolation problern which in turn encompassed the same classical interpolation problems, as well as the computation of the distance of a function f in L ~ to H~. At about the sametime as Sarason's work, V. M.

目次

I. Analysis of the Caratheodory Interpolation Problem.- II. Analysis of the Caratheodory Interpolation Problem for Positive-Real Functions.- III. Schur Numbers, Geophysics and Inverse Scattering Problems.- IV. Contractive Expansions on Euclidian and Hilbert Space.- V. Contractive One Step Intertwining Liftings.- VI. Isometric and Unitary Dilations.- VII. The Commutant Lifting Theorem.- VIII. Geometric Applications of the Commutant lifting Theorem.- IX. H? Optimization and Functional Models.- X. Some Classical Interpolation Problems.- XI. Interpolation as a Momentum Problem.- XII. Numerical Algorithms for H? Optimization in Control Theory.- XIII. Inverse Scattering Algorithms for the Commutant Lifting Theorem.- XIV. The Schur Representation.- XV. A Geometric Approach to Positive Definite Sequences.- XVI. Positive Definite Block Matrices.- XVII. A Physical Basis for the Layered Medium Model.- References.- Notation.

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示

詳細情報

  • NII書誌ID(NCID)
    BA10305132
  • ISBN
    • 3764324619
    • 0817624619
  • LCCN
    90032571
  • 出版国コード
    sz
  • タイトル言語コード
    eng
  • 本文言語コード
    eng
  • 出版地
    Basel ; Boston
  • ページ数/冊数
    xxiii, 632 p.
  • 大きさ
    24 cm
  • 分類
  • 件名
  • 親書誌ID
ページトップへ