Physical methods in plant sciences
著者
書誌事項
Physical methods in plant sciences
(Modern methods of plant analysis, new ser.,
Springer-Verlag, c1990
- : gw
- : us
大学図書館所蔵 全20件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographies and index
内容説明・目次
目次
Laser-Doppler Vibrometer Measurements of Leaves.- 1 Introduction.- 2 Materials and Methods.- 2.1 Laser-Doppler-Vibrometer Scanning System.- 2.2 Specific Materials.- 3 Two Simple Models for Vibrating Leaf Tissue.- 3.1 Clamped, Isotropic Membranes.- 3.2 Clamped, Isotropic Plates.- 4 Experiments and Results with Clamped Leaves.- 4.1 Point Measurements of the Vibration Velocity with LDV.- 4.2 Optical Scanning over the Surface with LDV-Scanning.- 5 Experiments and Results with Free Hanging Leaves.- 5.1 Point Measurements of the Vibration Velocity with LDV.- 5.2 Optical Scanning over the Surface with LD-Interferometry and LDV-Scanning.- 6 Discussion.- 6.1 Sound-Induced Vibrations of Leaves.- 6.2 The Usefulness of LDV and LDV-Scanning.- References.- Triplet States in Photosynthesis: Linear Dichroic Optical Difference Spectra via Magnetic Resonance.- 1 Why Triplet States Are of Interest.- 1.1 Some Physics.- 1.2 Magnetic Resonance.- 1.3 Optical Detection of Magnetic Resonance, ODMR.- 1.4 Instrumentation.- 2 Information Obtainable from ODMR Spectroscopy.- 2.1 Determination of Zero Field Splitting Parameters, Sublevel Population Probabilities and Decay Rates.- 2.2 Spectral Information: Microwave-Induced Phosphorescence, Fluorescence and Absorbance Spectra.- 2.3 Triplet-Minus-Singlet (T-S) Absorbance Difference Spectra.- 2.4 Linear Dichroic T-S Spectroscopy.- 2.5 Instrumentation for LD-(T-S) Spectroscopy.- 3 Applications of ODMR in Photosynthesis.- 3.1 FDMR Spectroscopy.- 3.2 ADMR Spectroscopy of Reaction Centers.- 3.2.1 T-S Spectra of Bacterial Reaction Centers.- 3.2.2 T-S Spectra of Plant Reaction Centers.- 3.2.3 Linear Dichroic T-S Spectroscopy.- 3.3 Spectral Simulations with Exciton Theory.- 4 Conclusions and Prospects.- References.- Laser Physical Methods: Laser Microprobe Mass Spectrometry.- 1 Introduction.- 2 Historical Survey.- 3 Instrumentation.- 3.1 LAMMA 500.- 3.2 LAMMA 1000.- 3.3 LIMA and LIMA-SIMS.- 4 Specimen Preparation.- 5 Features of the Instrument.- 5.1 Advantages.- 5.2 Disadvantages.- 5.3 Detection Limits and Sensitivity.- 5.4 Quantification.- 6 Experimental Parameters of Different Groups.- 7 Ion Formation Mechanisms and Characteristics of Spectra.- 8 Efficiency of Different Microprobe Methods.- 9 LAMMA Applications, Inorganic Ions.- 9.1 Inorganic Salts.- 9.2 Aerosol Research.- 9.3 Fingerprint Analysis of Single Cells.- 9.4 Analysis of Plant Exudates.- 9.5 Localization of Inorganic Ions and of Toxic Metals in Tissues.- 10 LAMMA Applications Organic Compound Analysis.- 10.1 Saccharides.- 10.2 Amino Acids, Oligopeptides and Alkaloids.- 10.3 Tracing of Organic Molecules in Plant Tissue.- 11 Stable Isotopes as Markers.- References.- Fast Atom Bombardment Mass Spectrometry.- 1 Introduction to Fast Atom Bombardment Mass Spectrometry.- 2 Quantification and Stable Isotope Analysis of Quaternary Ammonium Compounds.- 2.1 Betaines.- 2.2 Betaine Aldehyde.- 2.3 Choline.- 3 Quantification and Stable Isotope Analysis of Amino Acids.- 4 Analysis of Oligosaccharides.- 5 Analysis of Polypeptides.- 6 Analysis of Glycoproteins.- 7 Nucleotide Analysis.- 8 Structural Characterization of Miscellaneous Secondary Plant Products.- 9 Concluding Remarks.- 10 References.- Microdissection and Biochemical Analysis of Plant Tissues.- 1 Introduction.- 2 Freeze Stop.- 3 Storage of Frozen Tissues.- 4 Freeze-Drying.- 5 Sample Containers.- 6 Storage of Freeze-Dried Material.- 7 Dissection of Tissue.- 7.1 Environmental Requirements.- 7.2 Dissection Procedure.- 7.3 Collection and Transfer of Dissected Samples.- 8 Determination of Sample Mass.- 8.1 Microbalance.- 8.2 Mounting the Balance.- 8.3 Illumination and Viewing.- 8.4 Handling.- 8.5 Calibration.- 8.6 Maintenance.- 9 Biochemical Analysis of Samples.- 9.1 Working with Small Assay Volumes.- 9.1.1 Assay Racks.- 9.1.2 Pipetting.- 9.1.3 Use of Oil Wells.- 9.2 Enzymatic Cycling.- 9.3 Indicator Reaction.- 10 Example for the Complete Procedure: Determination of Fumarase Activity.- 11 Examples for Application: Intercellular Compartmentation of Physiological and Biochemical Properties in Plant Tissues.- 11.1 Appearance of Enzymes of Major Pathways in Distinct Leaf Cells.- 11.2 Leaf Development: Quantitative Histochemical Analysis Along an Elongating Primary Leaf of Hordeum vulgare.- 11.3 Leaf Movement: Examples for Biochemical Properties of Cells Along a Cross Section Through a Phaseolus coccineus Pulvinus.- 12 Final Remarks.- References.- Photoacoustic Spectroscopy - Photoacoustic and Photothermal Effects.- 1 Introduction.- 2 Physics of the Photoacoustic Effect.- 2.1 Excitation.- 2.2 Generation and Propagation of the Photoacoustic Signal.- 2.2.1 Signal Generation.- 2.2.2 Signal Propagation.- 2.3 Physicochemical and Biological Photoacoustic Effects.- 3 Measuring Systems.- 3.1 Excitation Sources.- 3.2 Detectors.- 3.2.1 Contact Detectors.- 3.2.2 Acoustic Detectors.- 3.2.3 Probe Beam Detection.- 3.2.4 Photothermal Radiometry.- 3.2.5 Photoacoustic and Photothermal Imaging.- 3.3 Signal Processing.- 4 Applications in Plant Analysis.- 4.1 Detection of Spectral Properties.- 4.1.1 Detection of Pigment Composition.- 4.1.2 Detection of Particular Components.- 4.1.3 Depth Profile Analysis.- 4.1.4 Photoacoustic Imaging of Plant Material.- 4.2 Detection of Thermal Properties.- 4.3 Detection of Physiological Parameters.- 4.3.1 Action Spectra.- 4.3.2 Photosynthetic Parameters.- 4.3.3 Kinetic Analysis.- 4.3.4 Quantum Yields.- 4.3.5 Other Parameters.- 5 Further Development.- References.- Membrane Operational Impedance Spectra of Plant Cells.- 1 Introduction.- 2 The Laplace Transform.- 3 Measuring Techniques.- 3.1 Current Clamp and Voltage Clamp Techniques.- 3.2 Instrumentation.- 3.2.1 Operational Amplifier.- 3.2.2 Sample-and-Hold.- 3.2.3 Analog to Digital Converter.- 4 Data Analysis Technique.- 4.1 Theory.- 4.1.1 Complex Impedance.- 4.1.2 Operational Impedance.- 4.2 Experimental Method.- 4.2.1 Data Acquisition.- 4.2.2 Computations.- 4.2.3 Example.- 5 The Concept of Membrane Capacitance.- 6 Conclusion.- References.- Image Instrumentation Methods of Plant Analysis.- 1 Introduction.- 2 Image Sensor Selection and Processing System.- 2.1 Image Sensor and Plant Information.- 2.2 Image Processing System.- 3 TV Spectral Image Instrumentation.- 3.1 Types and Features of TV Cameras.- 3.2 Spectroradioanalyzer for Field Measurement.- 3.3 Image Instrumentation of Plant Growth and Shape.- 3.4 Image Instrumentation of Visible Leaf Injury.- 4 Remote-Control Light Microscope System.- 4.1 Outline of the System and Its Performance.- 4.2 Continuous Observation of Guard and Epidermal Cells.- 5 Image Instrumentation of Chlorophyll Fluorescence Transients.- 5.1 Outline of the System and Its Performance.- 5.2 Diagnosis of Photosynthetic System.- 6 Thermal Image Instrumentation.- 6.1 Method for Measuring Plant Temperature and Its Accuracy.- 6.2 Evaluation of Stomatal Response, Transpiration, and Gas Sorption.- 7 Computed Tomography.- 7.1 Instrumentation of Living Trees by X-Ray CT.- 7.2 Instrumentation of Root Systems and Soil Moisture by MRI.- References.- Energy Dispersive X-Ray Analysis.- 1 Introduction.- 1.1 Capabilities.- 1.2 History of EDX Analysis.- 1.3 Applications of the Technique.- 1.4 The EDX Equipment.- 2 Principles - Application and Physics.- 2.1 Specimen - Electron Interaction.- 2.2 Excitation and Emission of X-Rays.- 2.3 Characteristics X-Rays.- 2.4 Spatial Resolution of the X-Rays.- 2.5 Detection.- 2.6 Specimen Independent Spectral Features.- 3 The Specimen.- 3.1 Introduction.- 3.2 Support Material and Adhesives.- 3.3 Fresh Specimens.- 3.4 Heat or Air Drying.- 3.5 Dehydration.- 3.6 "Chelation" and Ion Precipitation.- 3.7 Formless Specimens.- 3.8 Cryopreparation.- 3.8.1 Applicability.- 3.8.2 Preparation for Freezing.- 3.8.3 Freezing.- 3.8.4 SEM-EDX Analysis of Frozen Hydrated Specimens.- 3.8.5 Freeze Drying and Freeze-Dried Embedding.- 3.8.6 Cryosectioning.- 3.8.7 Use of Cryosections.- 4 The Spectrum.- 4.1 Calibration of the Detector.- 4.2 System Peaks and Bremsstrahlung.- 4.3 Adjustment of the Analyzer.- 4.3.1 Electron Image.- 4.3.2 Voltage of Instrument.- 4.3.3 Detector-Specimen Distance and Angle.- 4.3.4 Electron Beam Diameter.- 4.3.5 Acquisition Time.- 4.3.6 Selection of Magnification and Area of Acquisition.- 4.4 Analysis of the Spectrum.- 4.4.1 Aims.- 4.4.2 Peak Identification.- 4.4.3 Background Subtraction.- 4.4.4 Optimization of the Spectrum.- 5 Maps and Line Scans.- 5.1 Application.- 5.2 The Specimen.- 5.3 Selection of X-Rays for Line Scanning or Mapping.- 5.4 Map or Line Acquisition.- 5.5 Interpretation of the Map or Line.- 6 Quantitative Analysis.- 6.1 The Measurements.- 6.2 The Specimen.- 6.3 The Analysis.- 6.3.1 Counts per Channel.- 6.3.2 Relative Amounts.- 6.3.3 Absolute Amounts.- 7 Alternatives to EDX.- 7.1 Using X-Ray and EM Techniques.- 7.2 Cytochemistry.- 7.3 Bulk Analysis.- 8 Conclusions.- References.
「Nielsen BookData」 より