Journey through genius : the great theorems of mathematics
Author(s)
Bibliographic Information
Journey through genius : the great theorems of mathematics
(Science editions)
Wiley, c1990
Available at 26 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
Bibliography: p. 291-293
Includes index
Description and Table of Contents
Description
Praise for William Dunham s Journey Through Genius The GreatTheorems of Mathematics "Dunham deftly guides the reader throughthe verbal and logical intricacies of major mathematical questionsand proofs, conveying a splendid sense of how the greatestmathematicians from ancient to modern times presented theirarguments." Ivars Peterson Author, The Mathematical TouristMathematics and Physics Editor, Science News
"It is mathematics presented as a series of works of art; afascinating lingering over individual examples of ingenuity andinsight. It is mathematics by lightning flash." Isaac Asimov
"It is a captivating collection of essays of major mathematicalachievements brought to life by the personal and historicalanecdotes which the author has skillfully woven into the text. Thisis a book which should find its place on the bookshelf of anyoneinterested in science and the scientists who create it." R. L.Graham, AT&T Bell Laboratories
"Come on a time-machine tour through 2,300 years in which Dunhamdrops in on some of the greatest mathematicians in history. Almostas if we chat over tea and crumpets, we get to know them and theirideas ideas that ring with eternity and that offer glimpses intothe often veiled beauty of mathematics and logic. And all the whilewe marvel, hoping that the tour will not stop." Jearl Walker,Physics Department, Cleveland State University Author of The FlyingCircus of Physics
Table of Contents
Hippocrates' Quadrature of the Lune (ca. 440 B.C.).
Euclid's Proof of the Pythagorean Theorem (ca. 300 B.C.).
Euclid and the Infinitude of Primes (ca. 300 B.C.).
Archimedes' Determination of Circular Area (ca. 225 B.C.).
Heron's Formula for Triangular Area (ca. A.D. 75).
Cardano and the Solution of the Cubic (1545).
A Gem from Isaac Newton (Late 1660s).
The Bernoullis and the Harmonic Series (1689).
The Extraordinary Sums of Leonhard Euler (1734).
A Sampler of Euler's Number Theory (1736).
The Non-Denumerability of the Continuum (1874).
Cantor and the Transfinite Realm (1891).
Afterword.
Chapter Notes.
References.
Index.
by "Nielsen BookData"