書誌事項

Topics in Nevanlinna theory

Serge Lang, William Cherry

(Lecture notes in mathematics, 1433)

Springer-Verlag, c1990

  • : gw
  • : us

大学図書館所蔵 件 / 90

この図書・雑誌をさがす

注記

Bibliography: p. 169-171

Includes index

内容説明・目次

内容説明

These are notes of lectures on Nevanlinna theory, in the classical case of meromorphic functions, and the generalization by Carlson-Griffith to equidimensional holomorphic maps using as domain space finite coverings of C resp. Cn. Conjecturally best possible error terms are obtained following a method of Ahlfors and Wong. This is especially significant when obtaining uniformity for the error term w.r.t. coverings, since the analytic yields case a strong version of Vojta's conjectures in the number-theoretic case involving the theory of heights. The counting function for the ramified locus in the analytic case is the analogue of the normalized logarithmetic discriminant in the number-theoretic case, and is seen to occur with the expected coefficient 1. The error terms are given involving an approximating function (type function) similar to the probabilistic type function of Khitchine in number theory. The leisurely exposition allows readers with no background in Nevanlinna Theory to approach some of the basic remaining problems around the error term. It may be used as a continuation of a graduate course in complex analysis, also leading into complex differential geometry.

目次

Nevanlinna theory in one variable.- Equidimensional higher dimensional theory.- Nevanlinna Theory for Meromorphic Functions on Coverings of C.- Equidimensional Nevanlinna Theory on Coverings of Cn.

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示

詳細情報

  • NII書誌ID(NCID)
    BA10653219
  • ISBN
    • 3540527850
    • 0387527850
  • LCCN
    90010108
  • 出版国コード
    gw
  • タイトル言語コード
    eng
  • 本文言語コード
    eng
  • 出版地
    Berlin ; Tokyo
  • ページ数/冊数
    174 p.
  • 大きさ
    25 cm
  • 分類
  • 件名
  • 親書誌ID
ページトップへ