Superconductor applications : SQUIDs and machines
著者
書誌事項
Superconductor applications : SQUIDs and machines
(NATO advanced study institutes series, ser. B . Physics ; v. 21)
Plenum Press, c1977
大学図書館所蔵 件 / 全25件
-
該当する所蔵館はありません
- すべての絞り込み条件を解除する
注記
"Published in cooperation with NATO Scientific Affairs Division."
"Proceedings of a NATO Advances Study Institute on Small-Scale Applications of Superconductivity held in Gardone Riviera (Largo di Garda), Italy, September 1-10, 1976."--verso of t.p
Incudes bibliographical references and index
内容説明・目次
内容説明
This book includes small and large scale applications of super- conductivity. Part I, SQUIDs, comprises about 75% of this volume, and is devoted to small scale applications, mainly . uperconducting QUantum Interference Devices (SQUIDs), and the remainder, Part H, Machines, presents an updated review of large scale applications of superconduc- tivity. The present book combined with the previous book Superconducting Machines and Devices: Large Systems Applications edited by S. Foner and B. B. Schwartz, Plenum Press, New York (1974) represents a detailed and most up-to-date review of the applications of superconducting tech- nology. The text of the current book is suitable for advanced undergrad- uates or graduate students in applied physics and engineering courses. The book should be valuable to scientists, engineers and technologists interested in the current status and future applications of superconduc- tivity technology. The last 7 chapters in Part I review the major nation- al efforts on small scale technology and should prove useful for industrial and government planners as weIl as scientists and engineers.
目次
I - Squids.- 1: The Historical Context of Josephson's Discovery.- History.- 2: Macroscopic Quantum Phenomena in Superconductors.- I. Introduction.- A. Meissner Effect and Flux Quantization.- B. The dc Josephson Effect.- C. The Critical Current Through a Double Point Contact as a Function of the Applied Magnetic Field.- II. AC Quantum Effects.- A. Extension of the Two-Fluid Interpretation of the London Theory.- B. The ac Josephson Effect.- III. Resistive States in Wear Link Junctions.- A. The Current-Voltage Characteristics and the Resistive-Superconductive Region of a Single Superconducting Weak Link.- B. The Double Point Contact in the Resistive Superconducting Region, the dc SQUID.- 3: Superconducting Quantum Interference Devices for Low Frequency Measurements.- I. Introduction.- II. Superconductivity and the Josephson Effects.- A. Flux Quantization.- B. The Josephson Equations.- C. Types of Josephson Junctions, and their Current-Voltage Characteristics.- III. Dc SQUID.- A. Theory of the dc SQUID.- B. Operation of the dc SQUID.- C. Theory of Noise in the dc SQUID.- D. Practical dc SQUIDS: Fabrication and Performance.- E. Future Improvements in the dc SQUID.- IV. RF SQUID.- A. Theory of the rf SQUID.- B. Operation of the rf SQUID.- C. Noise in the rf SQUID.- D. Practical rf SQUIDS: Fabrication and Performance.- E. Future Improvements in the rf SQUID.- V. Squids as Magnetometers, Gradiometers, Susceptometers, and Voltmeters.- A. Flux Transformer.- B. Measurement of Magnetic Field.- C. Measurement of Magnetic Field Gradient.- D. Measurement of Magnetic Susceptibility.- E. Measurement of Voltage.- VI. Practical Applications of Squid-Based Devices.- 4: Equivalent Circuits and Analogs of the Josephson Effect.- I. Introduction.- II. Small Junctions.- A. Model of the Supercurrent Flow.- B. Voltage Biased Model.- C. Stewart-McCumber Model.- 1. Circuit equations.- 2. Mechanical analogues.- 3. I- curves.- 4. Plasma oscillations.- 5. Punchthrough.- 6. Interaction with rf currents.- D. Inductively-Connected External Elements.- 1. Circuit and mechanical analogues.- 2. Resistive shunts.- 3. Capacitive shunts.- 4. ac SQUID.- E. The de SQUID.- III. Large Junctions.- A. Two-Dimensional Systems.- 1. Circuit models.- 2. Two-dimensional mechanical analog.- B. One-Dimensional Junctions.- 1. Circuit equations.- 2. Mechanical analogue.- 3. Small oscillations and displacements.- 4. Magnetic diffraction and Fiske modes for $$e\gg{\lambda _J}$$.- 5. Junctions $$e\gg{\lambda _J}$$ having vortices and critical currents.- 6. Magnetic field behavior for $$e\gg{\lambda _J}$$.- 7. Vortex motion.- 8. Resonant vortex propagation.- 9. Finite behavior for $$e\gg{\lambda _J}$$.- 10. Vortex oscillations.- IV. Conclusions.- 5: Superconducting Devices for Metrology and Standards.- I. Introduction.- II. Voltage Standards.- A. The SI Volt.- B. Standard Cells and the Defined Volt.- C. The Josephs on Effect and e/h.- D. Practical Josephson Voltage Standards.- E. The Microwave Signal Source.- F. The Josephson Junction.- G. Shielding, Filtering, and Tempering.- H. Theoretical Uncertainty.- I. Present Activities.- III. Current Comparators and Ratio Measurements.- A. Resistive Networks.- B. Inductive Devices.- C. Cold Resistive Dividers.- D. Superconducting Inductive Current Comparators.- IV. Measurements of Rf Power and Attenuation.- A. Some General Remarks on RF and Microwave Measurements.- B. The SQUID as an RF Measuring Device.- C. Practical SQUIDs for RF Metrology.- D. The Measurement of Attenuation.- E. The Measurement of Power.- F. Systematic Errors.- V. Thermometry.- A. The Kelvin Scale Below 1 K.- B. Noise Thermometry with SQUID Sensors.- C. Magnetic Thermometry with SQUIDs.- D. Superconducting Fixed Points.- VI. Measurements of Frequency.- A. The Stability of Oscillators.- B. Oscillators with Superconducting Cavity Resonators.- C. Far Infrared Frequency Synthesis.- D. Recent Work.- 6: High Frequency Properties and Applications of Josephson Junctions from Microwaves to Far-Infrared.- I. General Properties of Josephson Junctions for High Frequency Applications.- A. High Frequency Fundamental Properties of the Ideal Josephson Junction.- B. The Parallel Impedance of Real Josephson Junctions.- C. Limiting Factors of Josephson Junctions at High Frequencies.- 1. Frequency limitation related to the physical mechanism.- 2. Geometrical structure and coupling.- 3. Thermal effects.- 4. Noise.- D. The Main Detection Mechanism.- 1. Wide band detection.- 2. Narrow band detection (linear).- E. The Josephson Junction and Parametric Amplification.- F. The Real JJ Analyzed with the RSJ Model.- 1. Voltage source model.- 2. The current source model.- 3. An important example: the Josephson heterodyne mixer with an external oscillator.- G. Noise.- 1. Physical origin of fluctuations in Josephson junctions.- 2. Josephson junction response in the presence of fluctuations.- H. Noise Temperature, Minimum Detectable Temperature, NEP.- 1. Noise temperatures.- 2. System sensitivity.- I. Coupling and Impedance Matching.- 1. General remarks.- 2. Impedance matching.- 3. Signal input coupling.- II. Analysis and Performances of High-Frequency Josephson Devices.- A. Generation of Radiation.- B. Bolometer.- 1. Bolometer characteristics.- 2. SNS and superconducting transition edge bolometers.- 3. Comparison of devices.- C. Video Detection.- 1. Junction quadratic response.- 2. Voltage response in the general case.- 3. Noise equivalent power.- 4. Discussion of experimental results and comparison with other video detectors.- D. Heterodyne Detection.- 1. External local oscillator.- 2. Internal local oscillator.- 3. Discussion of the results and comparative performances of other mixers.- E. Parametric Amplification.- 1. Parametric amplification with self-pumped JJ.- 2. Externally pumped JJ parametric amplifier.- 3. Discussion.- F. Conclusions.- 7: Fabrication of Josephson Junctions.- I. Introduction.- II. Fabrication Technology.- A. Evaporation Masks.- B. Photolithography.- C. Electron Lithography.- D. Thin-Film Deposition and Ion Etching.- III. Sandwich-Type Junctions.- A. Oxide-Barrier Junctions.- B. Evaporated Semiconductor Barrier Junctions.- C. Single-Crystal Silicon-Membrane Junctions.- IV. Junctions with Coplanar Electrodes.- A. Variable-Composition Junctions.- B. Semiconductor Bridge.- C. Microbridges.- V. Point Contacts.- 8: Biomagnetism.- I. Introduction.- II. Forward and Inverse Problems.- III. Squid Measurement Techniques.- IV. Magnetocardiogram.- V. Fetal Magnetocardiogram.- VI. Magnetomyogram.- VII. Magneto-Oculogram.- VIII. Magnetoencephelogram.- IX. Visually Evoked Field.- X. Expectations.- 9: A Progress Report on Commercial Superconducting Instruments in the United States.- I. Introduction.- II. SQUID Sensors.- III. Laboratory Probes.- IV. Geophysical Magnetometers.- V. Magnetic Anomaly Detectors.- VI. Biomedical Magnetometers.- VII. Sample Measuring Instruments.- VIII. Shielded Environments.- IX. Conclusions.- 10: Resistive Devices.- I. Introduction.- II. The 'Corresponding' SQUID.- III. The RSQUID and its 'Corresponding' SQUID.- IV. Behavior when Modulation Currents I and im are ABSENT.- A. Stable and Unstable Equilibrium.- B. Deviations from the Standard Behavior.- C. The Form of Ik (?j).- D. Fluctuations about Equilibrium.- E. Behavior when I is small.- V. Experiments with External Current I (AC or DC).- VI. Applications of RSQUIDs.- A. Types of RSQUIDs.- B. Picovoltmeters.- C. The RSQUID Noise Thermometer.- D. Heat Current Measurement.- 11: "Hot Superconductors": The Physics and Applications of Nonequilibrium Superconductivity.- I. Introduction.- II. Relaxation Processes and the Kinetic Equations.- III. Magnitudes and the Rothwarf-Taylor Equations.- IV. Solutions of the Boltzmann Equations.- 12: Computer Applications of Josephson Junctions.- I. Historical Notes.- II. The Josephson Junction as a Switching Device.- III. Device Fabrication.- IV. Circuits.- A. Logic Circuits.- B. Memory Circuits.- 13: Programs on Small-Scale Superconducting Devices in Canada.- Programs.- 14: Programs on Small-Scale Superconducting Devices in France.- Programs.- 15: Programs on Small-Scale Superconducting Devices in Germany.- Programs.- 16: Programs on Small-Scale Superconducting Devices in Italy.- Programs.- 17: Programs on Small-Scale Superconducting Devices in the Netherlands.- Programs.- 18: Programs on Small-Scale Superconducting Devices in the United Kingdom.- Programs.- 19: Programs on Small-Scale Superconducting Devices in the United States.- I. Summary.- II. Introduction.- III. Biomedical.- IV. Metrology.- V. Geophysical.- VI. Detection and Radiation.- VII. Digital Processing.- VIII. Device Properties.- IX. Trends.- II - Machines.- 20: Large-Scale Applications of Superconductivity.- I. Introduction.- II. Superconducting Materials and Magnets.- A. Introduction.- B. High-Field Superconductors.- 1. Superconducting materials.- C. Stabilized High Field Superconductors.- 1. Cryostatic stabilization.- 2. Adiabatic stabilization.- 3. Dynamic stability.- D. Conductors for dc and ac Magnets.- E. Irradiation Effects in Composite Superconductors.- F. General Design Aspects of Superconducting Magnets.- 1. Intrinsically stable coils.- 2. Fully or cryostatically stabilized coils.- 3. Current leads and coil protection.- G. Superconducting Magnets for LaboratoryApplication.- H. Magnets for High Energy Physics.- I. Superconducting Magnets for Fusion Reactors and MHD Generators.- 1. Fusion reactors.- 2. MHD generators.- J. Superconducting Magnets for Inductive Energy Storage.- K. Superconducting Magnets for Magnetic Separation.- III. Levitated Vehicles with Superconducting Magnets.- A. Introduction.- B. Basic Features of the Electrodynamic Flight.- C. Principle of the Electrodynamic Levitation System.- D. Various Lift and Guidance Systems.- E. Damping.- F. Propulsion Systems.- G. On-Board Cooling Systems.- H. Magnetic Shielding of the Passengers.- I. Electrodynamic Levitation Projects.- 1. FRG - the Erlangen test carrier and track.- 2. The Japanese National Railway magnetic levitation project.- 3. The Canadian Maglev-projeet.- 4. Work on magnetic levitation in Great Britain.- 5. The US program on magnetic levitation.- IV. Electric Machines.- A. Introduction.- B. Limits of Conventional Machines.- C. Superconducting Machines: General Remarks.- D. DC Machines.- 1. Heteropolar machines.- 2. Homopolar machines.- E. Synchronous Machines.- 1. Technical limits of conventional turbogenerators.- 2. Potential advantages of superconducting generators.- 3. Basic construction of superconducting generators.- 4. Cooling system.- 5. Armature winding (stator).- 6. Machine screening.- 7. Electrical operating behavior and characteristic data.- 8. Economic considerations.- 9. Superconducting turbine-generator projects.- V. Superconducting Cables.- A. Introduction.- B. Superconducting Cable Concepts.- 1. Mechanical construction.- 2. Conductor configurations.- 3. Comparison between superconducting direct current and alternating current cables.- C. Cryogenic Envelope.- D. Superconducting Material.- 1. Direct current superconductors.- 2. Alternating current superconductors.- E. Cable Core.- F. Electrical Insulation.- G. Cable Cooling.- H. Cable Terminations.- I. Superconducting Cable Projects.- J. The Economics of Superconducting Cables.- K. Future Development of Superconducting Cables.- I - SQUIDs.- II - Machines.
「Nielsen BookData」 より