Statistical analysis of measurement error models and applications : proceedings of the AMS-IMS-SIAM Joint Summer Research conference held June 10-16, 1989, with support from the National Science Foundation and the U.S. Army Research Office
著者
書誌事項
Statistical analysis of measurement error models and applications : proceedings of the AMS-IMS-SIAM Joint Summer Research conference held June 10-16, 1989, with support from the National Science Foundation and the U.S. Army Research Office
(Contemporary mathematics, 112)
American Mathematical Society, c1990
大学図書館所蔵 全58件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
"The AMS-IMS-SIAM Joint Summer Research Conference in the Mathematical Sciences on Statistical Analysis of Measurement Error Models and Applications was held at Humboldt State University, Arcata, California..." --T.p. verso
内容説明・目次
内容説明
Measurement error models describe functional relationships among variables observed, subject to random errors of measurement. Examples include linear and nonlinear errors-in-variables regression models, calibration and inverse regression models, factor analysis models, latent structure models, and simultaneous equations models. Such models are used in a wide variety of areas, including medicine, the life sciences, econometrics, chemometrics, geology, sample surveys, and time series. Although the problem of estimating the parameters of such models exists in most scientific fields, there is a need for more sources that treat measurement error models as an area of statistical methodology.This volume is designed to address that need. This book contains the proceedings of an AMS-IMS-SIAM Joint Summer Research Conference in the Mathematical Sciences on Statistical Analysis of Measurement Error Models and Applications. The conference was held at Humboldt State University in Arcata, California in June 1989. The papers in this volume fall into four broad groups. The first group treats general aspects of the measurement problem and features a discussion of the history of measurement error models. The second group focuses on inference for the nonlinear measurement error model, an active area of research which generated considerable interest at the conference. The third group of papers examines computational aspects of estimation, while the final set studies estimators possessing robustness properties against deviations from common model assumptions.
目次
GENERAL PROBLEMS: Some history of functional and structural relationships by P. Sprent Errors-in-variables regression problems in epidemiology by A. S. Whittemore Models with latent variables: LISREL versus PLS by H. Schneeweiss Prediction of true values for the measurement error model by W. A. Fuller Analysis of residuals from measurement error models by S. M. Miller Errors-in-variables estimation in the presence of serially correlated observations by J. L. Eltinge NONLINEAR MODELS: Improvements of the naive approach to estimation in nonlinear errors-in-variables regression models by L. J. Gleser Structural logistic regression measurement error models by L. A. Stefanski and R. J. Carroll Measurement error model estimation using iteratively weighted least squares by D. W. Schafer Problematic points in nonlinear calibration by P. J. Brown and S. D. Oman Instrumental variable estimation of the nonlinear measurement error model by Y. Amemiya A likelihood ratio test for error covariance specification in nonlinear measurement error models by D. J. Schnell Plotting techniques for errors in variables problems by C. J. Spiegelman COMPUTATIONAL ASPECTS: Perturbation theory and least squares with errors in the variables by G. W. Stewart Orthogonal distance regression by P. T. Boggs and J. E. Rogers Computing error bounds for regression problems by N. J. Higham ROBUST PROCEDURES: Asymptotic robustness of normal theory methods for the analysis of latent curves by M. W. Browne Bounded influence errors-in-variables regression by C.-L. Cheng and J. W. Van Ness Bounded influence estimation in the errors-in-variables model by V. J. Yohai and R. H. Zamar.
「Nielsen BookData」 より