Latin squares : new developments in the theory and applications
Author(s)
Bibliographic Information
Latin squares : new developments in the theory and applications
(Annals of discrete mathematics, 46)
North-Holland , Distributors for the U.S.A. and Canada, Elsevier Science Pub. Co., 1991
Available at / 39 libraries
-
Hokkaido University, Library, Graduate School of Science, Faculty of Science and School of Science図書
DC19:512.9/D4132070185141
-
No Libraries matched.
- Remove all filters.
Note
Includes bibliographical references and index
Description and Table of Contents
Description
In 1974 the editors of the present volume published a well-received book entitled ``Latin Squares and their Applications''. It included a list of 73 unsolved problems of which about 20 have been completely solved in the intervening period and about 10 more have been partially solved.
The present work comprises six contributed chapters and also six further chapters written by the editors themselves. As well as discussing the advances which have been made in the subject matter of most of the chapters of the earlier book, this new book contains one chapter which deals with a subject (r-orthogonal latin squares) which did not exist when the earlier book was written.
The success of the former book is shown by the two or three hundred published papers which deal with questions raised by it.
Table of Contents
Foreword (P. Erdoes). Introduction (J. Denes, A.D. Keedwell). Transversals and Complete Mappings (J. Denes, A.D. Keedwell). Sequenceable and R-Sequenceable Groups: Row Complete Latin Squares (J. Denes, A.D. Keedwell). Latin Squares With and Without Subsquares of Prescribed Type (K. Heinrich). Recursive Constructions of Mutually Orthogonal Latin Squares (A.E. Brouwer). r-Orthogonal Latin Squares (G.B. Belyavskaya). Latin Squares and Universal Algebra (T. Evans). Embedding Theorems for Partial Latin Squares (C.C. Lindner).
Latin Squares and Codes (J. Denes, A.D. Keedwell). Latin Squares as Experimental Designs (D.A. Preece). Latin Squares and Geometry (J. Denes, A.D. Keedwell). Frequency Squares (J. Denes, A.D. Keedwell). Bibliography. Subject Index.
by "Nielsen BookData"