Uniqueness theorems in linear elasticity
著者
書誌事項
Uniqueness theorems in linear elasticity
(Springer tracts in natural philosophy, vol. 19)
Springer-Verlag, 1971
- : gw
- : us
- : softcover
大学図書館所蔵 全37件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Bibliography: p. [118]-125
Includes index
内容説明・目次
- 巻冊次
-
: gw ISBN 9783540052531
内容説明
The classical result for uniqueness in elasticity theory is due to Kirchhoff. It states that the standard mixed boundary value problem for a homogeneous isotropic linear elastic material in equilibrium and occupying a bounded three-dimensional region of space possesses at most one solution in the classical sense, provided the Lame and shear moduli, A and J1 respectively, obey the inequalities (3 A + 2 J1) > 0 and J1>O. In linear elastodynamics the analogous result, due to Neumann, is that the initial-mixed boundary value problem possesses at most one solution provided the elastic moduli satisfy the same set of inequalities as in Kirchhoffs theorem. Most standard textbooks on the linear theory of elasticity mention only these two classical criteria for uniqueness and neglect altogether the abundant literature which has appeared since the original publications of Kirchhoff.
To remedy this deficiency it seems appropriate to attempt a coherent description ofthe various contributions made to the study of uniqueness in elasticity theory in the hope that such an exposition will provide a convenient access to the literature while at the same time indicating what progress has been made and what problems still await solution. Naturally, the continuing announcement of new results thwarts any attempt to provide a complete assessment. Apart from linear elasticity theory itself, there are several other areas where elastic uniqueness is significant.
目次
1 Introduction.- 2 Basic Equations.- 2.1 Formulation of Initial-Boundary Value Problems.- 2.2 The Classical and Weak Solutions.- 2.3 The Homogeneous Isotropic Body. Plane Elasticity.- 2.4 Definiteness Properties of the Elasticities.- 3 Early Work.- 4 Modern Uniqueness Theorems in Three-Dimensional Elastostatics.- 4.1 The Displacement Boundary Value Problem for Bounded Regions.- 4.1.1 General Anisotropy.- 4.1.2 A Homogeneous Anisotropic Material.- 4.1.3 A Homogeneous Isotropic Material.- 4.1.4 The Implication of Strong Ellipticity for Uniqueness.- 4.1.5 The Non-Homogeneous Isotropic Material with no Definiteness Assumptions on the Elasticities.- 4.1.6 The Displacement Boundary Value Problem for a Homogeneous Isotropic Sphere.- 4.1.7 Fichera's Maximum Principle.- 4.2 Exterior Domains.- 4.3 The Traction Boundary Value Problem.- 4.3.1 General Anisotropy.- 4.3.2 A Homogeneous Isotropic Material.- 4.3.3 The Traction Boundary Value Problem for a Homogeneous Isotropic Elastic Sphere.- 4.3.4 Necessary Conditions for Uniqueness in the Traction Boundary Value Problem for Three-Dimensional Homogeneous Isotropic Elastic Bodies.- 4.4 Mixed Boundary Value Problems.- 4.4.1 General Anisotropy.- 4.4.2 A Homogeneous Isotropic Material.- 5 Uniqueness Theorems in Homogeneous Isotropic Two-Dimensional Elastostatics.- 5.1 Kirchhoff's Theorem in Two-Dimensions. The Displacement and Traction Boundary Value Problems.- 5.2 Uniqueness in Plane Problems with Special Geometries.- Appendix: Uniqueness of Three-Dimensional Axisymmetric Solutions.- 6 Problems in the Whole- and Half-Space.- 6.1 Specification of the Various Boundary Value Problems. Continuity onto the Boundary and in the Neighbourhood of Infinity.- 6.2 Uniqueness of Problems (a)-(d). Corollaries for the Space EN.- 6.3 Uniqueness for the Mixed-Mixed Problem of Type (e).- 6.3.1 A Complete Representation of the Biharmonic Displacement in a Homogeneous Isotropic Body Occupying the Half-Space.- 6.3.2 Uniqueness in the Mixed-Mixed Problem (e).- 7 Miscellaneous Boundary Value Problems.- 7.1 Problems for a Sphere.- 7.2 The Cauchy Problem for Isotropic Elastostatics.- 7.3 The Signorini Problem. Other Problems with Ambiguous Conditions.- 8 Uniqueness Theorems in Elastodynamics. Relations with Existence, Stability, and Boundedness of Solutions.- 8.1 The Initial Displacement and Mixed-Boundary Value Problems. Energy Arguments.- 8.2 The Initial-Displacement Boundary Value Problem. Analyticity Arguments.- 8.3 The Initial-Mixed Boundary Value Problem for Bounded Regions. Further Arguments.- 8.4 Summary of Existing Results in the Uniqueness of Elastodynamic Solutions.- 8.5 Non-Standard Problems, including those with Ambiguous Conditions.- 8.6 Stability, Boundedness, Existence and Uniqueness.- References.
- 巻冊次
-
: softcover ISBN 9783642651038
内容説明
The classical result for uniqueness in elasticity theory is due to Kirchhoff. It states that the standard mixed boundary value problem for a homogeneous isotropic linear elastic material in equilibrium and occupying a bounded three-dimensional region of space possesses at most one solution in the classical sense, provided the Lame and shear moduli, A and J1 respectively, obey the inequalities (3 A + 2 J1) > 0 and J1>O. In linear elastodynamics the analogous result, due to Neumann, is that the initial-mixed boundary value problem possesses at most one solution provided the elastic moduli satisfy the same set of inequalities as in Kirchhoffs theorem. Most standard textbooks on the linear theory of elasticity mention only these two classical criteria for uniqueness and neglect altogether the abundant literature which has appeared since the original publications of Kirchhoff. To remedy this deficiency it seems appropriate to attempt a coherent description ofthe various contributions made to the study of uniqueness in elasticity theory in the hope that such an exposition will provide a convenient access to the literature while at the same time indicating what progress has been made and what problems still await solution. Naturally, the continuing announcement of new results thwarts any attempt to provide a complete assessment. Apart from linear elasticity theory itself, there are several other areas where elastic uniqueness is significant.
目次
1 Introduction.- 2 Basic Equations.- 2.1 Formulation of Initial-Boundary Value Problems.- 2.2 The Classical and Weak Solutions.- 2.3 The Homogeneous Isotropic Body. Plane Elasticity.- 2.4 Definiteness Properties of the Elasticities.- 3 Early Work.- 4 Modern Uniqueness Theorems in Three-Dimensional Elastostatics.- 4.1 The Displacement Boundary Value Problem for Bounded Regions.- 4.1.1 General Anisotropy.- 4.1.2 A Homogeneous Anisotropic Material.- 4.1.3 A Homogeneous Isotropic Material.- 4.1.4 The Implication of Strong Ellipticity for Uniqueness.- 4.1.5 The Non-Homogeneous Isotropic Material with no Definiteness Assumptions on the Elasticities.- 4.1.6 The Displacement Boundary Value Problem for a Homogeneous Isotropic Sphere.- 4.1.7 Fichera's Maximum Principle.- 4.2 Exterior Domains.- 4.3 The Traction Boundary Value Problem.- 4.3.1 General Anisotropy.- 4.3.2 A Homogeneous Isotropic Material.- 4.3.3 The Traction Boundary Value Problem for a Homogeneous Isotropic Elastic Sphere.- 4.3.4 Necessary Conditions for Uniqueness in the Traction Boundary Value Problem for Three-Dimensional Homogeneous Isotropic Elastic Bodies.- 4.4 Mixed Boundary Value Problems.- 4.4.1 General Anisotropy.- 4.4.2 A Homogeneous Isotropic Material.- 5 Uniqueness Theorems in Homogeneous Isotropic Two-Dimensional Elastostatics.- 5.1 Kirchhoff's Theorem in Two-Dimensions. The Displacement and Traction Boundary Value Problems.- 5.2 Uniqueness in Plane Problems with Special Geometries.- Appendix: Uniqueness of Three-Dimensional Axisymmetric Solutions.- 6 Problems in the Whole- and Half-Space.- 6.1 Specification of the Various Boundary Value Problems. Continuity onto the Boundary and in the Neighbourhood of Infinity.- 6.2 Uniqueness of Problems (a)-(d). Corollaries for the Space EN.- 6.3 Uniqueness for the Mixed-Mixed Problem of Type (e).- 6.3.1 A Complete Representation of the Biharmonic Displacement in a Homogeneous Isotropic Body Occupying the Half-Space.- 6.3.2 Uniqueness in the Mixed-Mixed Problem (e).- 7 Miscellaneous Boundary Value Problems.- 7.1 Problems for a Sphere.- 7.2 The Cauchy Problem for Isotropic Elastostatics.- 7.3 The Signorini Problem. Other Problems with Ambiguous Conditions.- 8 Uniqueness Theorems in Elastodynamics. Relations with Existence, Stability, and Boundedness of Solutions.- 8.1 The Initial Displacement and Mixed-Boundary Value Problems. Energy Arguments.- 8.2 The Initial-Displacement Boundary Value Problem. Analyticity Arguments.- 8.3 The Initial-Mixed Boundary Value Problem for Bounded Regions. Further Arguments.- 8.4 Summary of Existing Results in the Uniqueness of Elastodynamic Solutions.- 8.5 Non-Standard Problems, including those with Ambiguous Conditions.- 8.6 Stability, Boundedness, Existence and Uniqueness.- References.
「Nielsen BookData」 より