Diophantine equations and inequalities in algebraic number fields
著者
書誌事項
Diophantine equations and inequalities in algebraic number fields
Springer-Verlag, c1991
- : us
- : gw
大学図書館所蔵 件 / 全43件
-
該当する所蔵館はありません
- すべての絞り込み条件を解除する
注記
Includes bibliographical references and index
内容説明・目次
内容説明
The classical circle method of Hardy and Littlewood is one of the most effective methods of additive number theory. Two examples are its success with Waring's problem and Goldbach's conjecture. In this book, Wang offers instances of generalizations of important results on diophantine equations and inequalities over rational fields to algebraic number fields. The book also contains an account of Siegel's generalized circle method and its applications to Waring's problem and additive equations and an account of Schmidt's method on diophantine equations and inequalities in several variables in algebraic number fields.
「Nielsen BookData」 より