Bibliographic Information

The Schrödinger equation

by F.A. Berezin, M.A. Shubin

(Mathematics and its applications, . Soviet series ; v. 66)

Kluwer Academic Publishers, c1991

Other Title

Уравнение шредингера

Search this Book/Journal
Note

Includes bibliographical references and index

Description and Table of Contents

Description

4Et moi, ..., si j'avait su comment en revenir, One service mathematics has rendered the je n'y serais point alle.' human race. It has put common sense back Jules Verne where it belongs, on the topmost shelf next to the dusty canister labelled 'discarded non* The series is divergent; therefore we may be sense'. able to do something withit. Eric T. Bell O. Heaviside Mathematicsis a tool for thought. A highly necessary tool in a world whereboth feedback and non- linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics ...'; 'One service logic has rendered com- puter science ...'; 'One service category theory has rendered mathematics ...'. All arguably true. And all statements obtainable this way form part of the raison d' tre ofthis series.

Table of Contents

1. General Concepts of Quantum Mechanics.- 1.1. Formulation of Basic Postulates.- 1.2. Some Corollaries of the Basic Postulates.- 1.3. Time Differentiation of Observables.- 1.4. Quantization.- 1.5. The Uncertainty Relations and Simultaneous Measurability of Physical Quantities.- 1.6. The Free Particle in Three-Dimensional Space.- 1.7. Particles with Spin.- 1.8. Harmonic Oscillator.- 1.9. Identical Particles.- 1.10. Second Quantization.- 2. The One-Dimensional Schroedinger Equation.- 2.1. Self-Adjointness.- 2.2. An Estimate of the Growth of Generalized Eigenfunctions.- 2.3. The Schroedinger Operator with Increasing Potential.- 1. Discreteness of spectrum.- 2. Comparison theorems and the behaviour of eigenfunctions as x ??..- 3. Theorems on zeros of eigenfunctions.- 2.4. On the Asymptotic Behaviour of Solutions of Certain Second-Order Differential Equations as x ??.- 1. The case of integrable potential.- 2. Liouville's transformation and operators with non-integrable potential.- 2.5. On Discrete Energy Levels of an Operator with Semi-Bounded Potential.- 1 The operator in a half-axis with Dirichlet's boundary condition.- 2. The case of an operator on the half-axis with the Neumann boundary condition.- 3. The case of an operator on the whole axis.- 2.6. Eigenfunction Expansion for Operators with Decaying Potentials...- 1. Preliminary remarks.- 2. Formulation of the main theorem.- 3. Two proofs of Theorem 6.1..- 4. One-dimensional oper-ator obtained from the radially symmetric three-dimensional operator.- 5. The case of an operator on the whole axis.- 2.7. The Inverse Problem of Scattering Theory.- 1. Inverse problem on the half-axis.- 2. Inverse problem on the whole axis.- 2.8. Operator with Periodic Potential.- 1. Bloch functions and the band structure of the spectrum.- 2. Expansion into Bloch eigenfunctions.- 3. The density of states.- 3. The Multidimensional Schroedinger Equation.- 3.1. Self-Adjointness.- 3.2. An Estimate of the Generalized Eigenfunctions.- 3.3. Discrete Spectrum and Decay of Eigenfunctions.- 1. Discreteness of spectrum.- 2. Decay of eigenfunctions.- 3. Non-degeneracy of the ground state and positiveness of the first eigenfunction.- 4. On the zeros of eigenfunctions 180..- 3.4. The Schroedinger Operator with Decaying Potential: Essential Spectrum and Eigenvalues.- 1. Essential spectrum.- 2. Separation of variables in the case of spherically symmetric potential and the Laplace-Beltrami operator on a sphere.- 3. Estimation of the number of negative eigenvalues.- 4. Absence of positive eigenvalues.- 3.5. The Schroedinger Operator with Periodic Potential.- 1. Lattices.- 2. Bloch functions.- 3. Expansion in Bloch functions.- 4. Band functions and the band structure of the spectrum.- 5. Theorem on eigenfunction expansion.- 6. Non-triviality of band functions and the absence of a point spectrum.- 7. Density of states.- 4. Scattering Theory.- 4.1. The Wave Operators and the Scattering Operator.- 1. The basic definitions and the statement of the problem.- 2. Physical interpretation.- 3. Properties of the wave operators.- 4. The invariance principle and the abstract conditions for the existence and completeness of the wave operators.- 4.2. Existence and Completeness of the Wave Operators.- 1. The abstract scheme of Enss.- 2. The case of the Schroedinger operator.- 3. The scattering matrix.- 4. One-dimensional case.- 5. Spherically symmetric case.- 4.3. The Lippman-Schwinger Equations and the Asymptotics of Eigen-functions.- 1. A derivation of the Lippman-Schwinger equations.- 2. Another derivation of the Lippman-Schwinger equations.- 3. An outline of the proof of the completeness of wave operators by the stationary method.- 4. Discussion on the Lippman-Schwinger equation.- 5. Asymptotics of eigenfunctions.- 5. Symbols of Operators and Feynman Path Integrals.- 5.1. Symbols of Operators and Quantization: qp-and pq-Symbols and Weyl Symbols.- 1. The general concept of symbol and its connection with quantization.- 2. The qp-and pq-symbols.- 3. Symmetric or Weyl symbols.- 4. Weyl symbols and linear canonical transformations.- 5. Weyl symbols and reflections.- 5.2. Wick and Anti-Wick Symbols. Covariant and Contravariant Symbols.- 1. Annihilation and creation operators. Fock space.- 2. Definition and elementary properties of Wick and Anti-Wick symbols.- 3. Covariant and contravariant symbols.- 4. Convexity inequalities and Feynman-type inequalities.- 5.3. The General Concept of Feynman Path Integral in Phase Space. Symbols of the Evolution Operator.- 1. The method of Feynman Path integrals.- 2. Weyl symbol of the evolution operator.- 3. The Wick symbol of the evolution operator.- 4. pq-and qp-symbols of the evolution operator and the path integral for matrix elements.- 5.4. Path Integrals for the Symbol of the Scattering Operator and for the Partition Function.- 1. Path integral for the symbol of the scattering operator.- 2. The path integral for the partition function.- 5.5. The Connection between Quantum and Classical Mechanics. Semiclassical Asymptotics.- 1. The concept of a semiclassical asymptotic.- 2. The operator initial-value problem.- 3. Asymptotics of the Green's function.- 4. Asymptotic behaviour of eigenvalues.- 5. Bohr's formula 383..- Supplement 1. Spectral Theory of Operators in Hilbert Space.- S1.1. Operators in Hilbert Space. The Spectral Theorem.- 1. Preliminaries.- 2. Theorem on the spectral decomposition of a self-adjoint operator in a separable Hilbert space.- 3. Examples and exercises.- 4. Commuting self-adjoint operators in Hilbert space, operators with simple spectrum.- 5. Functions of self-adjoint operators.- 6. One-parameter groups of unitary operators.- 7. Operators with simple spectrum.- 8. The classification of spectra.- 9. Problems and exercises.- S1.2. Generalized Eigenfunctions.- 1. Preliminary remarks.- 2. Hilbert-Schmidt operators.- 3. Rigged Hilbert spaces.- 4. Generalized eigenfunctions.- 5. Statement and proof of main theorem.- 6. Appendix to the main theorem.- 7. Generalized eigenfunctions of differential operators.- S1.3. Variational Principles and Perturbation Theory for a Discrete Spectrum.- S1.4. Trace Class Operators and the Trace.- 1. Definition and main properties.- 2. Polar decomposition of an operator.- 3. Trace norm.- 4. Expressing the trace in terms of the kernel of the operator.- S1.5. Tensor Products of Hilbert Spaces.- Supplement 2. Sobolev Spaces and Elliptic Equations.- S2.1. Sobolev Spaces and Embedding Theorems.- S2.2. Regularity of Solutions of Elliptic Equations and a priori Estimates.- S2.3. Singularities of Green's Functions.- Supplement 3. Quantization and Supermanifolds.- S3.1.Supermanifolds:Recapitulations.- 1. Superspaces and supermanifolds.- 2. Classical Lie superalgebras.- 3. Lie supergroups and homogeneous superspaces in ternis of the point functor.- 4. Two types of mechanics on supermanifolds and Shander's time.- S3.2. Quantization: main procedures.- S3.3. Supersymmetry of the Ordinary Schroedinger Equation and of the Electron in the Non-Homogeneous Magnetic Field.- A Short Guide to the Bibliography.

by "Nielsen BookData"

Related Books: 1-1 of 1
Details
Page Top