Fewnomials
著者
書誌事項
Fewnomials
(Translations of mathematical monographs, v. 88)
American Mathematical Society, c1991
- タイトル別名
-
Малочлены
Malochleny
大学図書館所蔵 全44件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes index
Bibliography: p. 133-136
Translated from the Russian by Smilka Zdravkovska
内容説明・目次
内容説明
The ideology of the theory of fewnomials is the following: real varieties defined by 'simple,' not cumbersome, systems of equations should have a 'simple' topology. One of the results of the theory is a real transcendental analogue of the Bezout theorem: for a large class of systems of $k$ transcendental equations in $k$ real variables, the number of roots is finite and can be explicitly estimated from above via the 'complexity' of the system. A more general result is the construction of a category of real transcendental manifolds that resemble algebraic varieties in their properties. These results given new information on level sets of elementary functions and even on algebraic equations.The topology of geometric objects given via algebraic equations (real-algebraic curves, surfaces, singularities, etc.) quickly becomes more complicated as the degree of the equations increases. It turns out that the complexity of the topology depends not on the degree of the equations but only on the number of monomials appearing in them. This book provides a number of theorems estimating the complexity of the topology of geometric objects via the cumbersomeness of the defining equations. In addition, the author presents a version of the theory of fewnomials based on the model of a dynamical system in the plane. Pfaff equations and Pfaff manifolds are also studied.
目次
An Analogue of the Bezout Theorem for a System of Real Elementary Equations Two Simple Versions of the Theory of Fewnomials Analogues of the Theorems of Rolle and Bezout for Separating Solutions of Pfaff Equations Pfaff Manifolds Real-Analytic Varieties with Finiteness Properties and Complex Abelian Integrals.
「Nielsen BookData」 より