Diophantine geometry
著者
書誌事項
Diophantine geometry
(Encyclopaedia of mathematical sciences / editor-in-chief, R.V. Gamkrelidze, v. 60 . Number theory ; 3)
Springer-Verlag, c1991
- : gw
- : us
- タイトル別名
-
Number theory III
Teoriya chisel 3
Number theory 3
Number theory three
大学図書館所蔵 全122件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Bibliography: p. [263]-282
Includes index
内容説明・目次
内容説明
In 1988 Shafarevich asked me to write a volume for the Encyclopaedia of Mathematical Sciences on Diophantine Geometry. I said yes, and here is the volume. By definition, diophantine problems concern the solutions of equations in integers, or rational numbers, or various generalizations, such as finitely generated rings over Z or finitely generated fields over Q. The word Geometry is tacked on to suggest geometric methods. This means that the present volume is not elementary. For a survey of some basic problems with a much more elementary approach, see [La 9Oc]. The field of diophantine geometry is now moving quite rapidly. Out standing conjectures ranging from decades back are being proved. I have tried to give the book some sort of coherence and permanence by em phasizing structural conjectures as much as results, so that one has a clear picture of the field. On the whole, I omit proofs, according to the boundary conditions of the encyclopedia. On some occasions I do give some ideas for the proofs when these are especially important. In any case, a lengthy bibliography refers to papers and books where proofs may be found. I have also followed Shafarevich's suggestion to give examples, and I have especially chosen these examples which show how some classical problems do or do not get solved by contemporary in sights. Fermat's last theorem occupies an intermediate position. Al though it is not proved, it is not an isolated problem any more.
目次
- I Some Qualitative Diophantine Statements.- 1. Basic Geometric Notions.- 2. The Canonical Class and the Genus.- 3. The Special Set.- 4. Abelian Varieties.- 5. Algebraic Equivalence and the Neron-Severi Group.- 6. Subvarieties of Abelian and Semiabelian Varieties.- 7. Hilbert Irreducibility.- II Heights and Rational Points.- 1. The Height for Rational Numbers and Rational Functions.- 2. The Height in Finite Extensions.- 3. The Height on Varieties and Divisor Classes.- 4. Bound for the Height of Algebraic Points.- III Abelian Varieties.- 0. Basic Facts About Algebraic Families and Neron Models.- 1, The Height as a Quadratic Function.- 2. Algebraic Families of Heights.- 3. Torsion Points and the l-Adic Representations.- 4. Principal Homogeneous Spaces and Infinite Descents.- 5. The Birch-Swinnerton-Dyer Conjecture.- 6. The Case of Elliptic Curves Over Q.- IV Faltings' Finiteness Theorems on Abelian Varieties and Curves.- 1. Torelli's Theorem.- 2. The Shafarevich Conjecture.- 3. The l-Adic Representations and Semisimplicity.- 4. The Finiteness of Certain l-Adic Representations. Finiteness I Implies Finiteness II.- 5. The Faltings Height and Isogenies: Finiteness I.- 6. The Masser-Wustholz Approach to Finiteness I.- V Modular Curves Over Q.- 1. Basic Definitions.- 2. Mazur's Theorems.- 3. Modular Elliptic Curves and Fermat's Last Theorem.- 4. Application to Pythagorean Triples.- 5. Modular Elliptic Curves of Rank 1.- VI The Geometric Case of Mordell's Conjecture.- 0. Basic Geometric Facts.- 1. The Function Field Case and Its Canonical Sheaf.- 2. Grauert's Construction and Vojta's Inequality.- 3. Parshin's Method with (?
- 2x/y).- 4. Manin's Method with Connections.- 5. Characteristic p and Voloch's Theorem.- VII Arakelov Theory.- 1. Admissible Metrics Over C.- 2. Arakelov Intersections.- 3. Higher Dimensional Arakelov Theory.- VIII Diophantine Problems and Complex Geometry.- 1. Definitions of Hyperbolicity.- 2. Chern Form and Curvature.- 3. Parshin's Hyperbolic Method.- 4. Hyperbolic Imbeddings and Noguchi's Theorems.- 5. Nevanlinna Theory.- IX Weil Functions. Integral Points and Diophantine Approximations.- 1. Weil Functions and Heights.- 2. The Theorems of Roth and Schmidt.- 3. Integral Points.- 4. Vojta's Conjectures.- 5. Connection with Hyperbolicity.- 6. From Thue-Siegel to Vojta and Faltings.- 7. Diophantine Approximation on Toruses.- X Existence of (Many) Rational Points.- 1. Forms in Many Variables.- 2. The Brauer Group of a Variety and Manin's Obstruction.- 3. Local Specialization Principle.- 4. Anti-Canonical Varieties and Rational Points.
「Nielsen BookData」 より