Microlocal analysis and nonlinear waves
著者
書誌事項
Microlocal analysis and nonlinear waves
(The IMA volumes in mathematics and its applications, v. 30)
Springer-Verlag, c1991
- : us
- : gw
大学図書館所蔵 全39件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
"Based on the proceedings of a workshop which was an integral part of the 1988-1989 IMA program on "Nonlinear Waves"" -- Foreword
Includes bibliographical references
内容説明・目次
- 巻冊次
-
: us ISBN 9780387975917
内容説明
This IMA Volume in Mathematics and its Applications MICROLOCAL ANALYSIS AND NONLINEAR WAVES is based on the proceedings of a workshop which was an integral part of the 1988- 1989 IMA program on "Nonlinear Waves". We thank Michael Beals, Richard Melrose and Jeffrey Rauch for organizing the meeting and editing this proceedings volume. We also take this opportunity to thank the National Science Foundation whose financial support made the workshop possible. A vner Friedman Willard Miller, Jr. PREFACE Microlocal analysis is natural and very successful in the study of the propagation of linear hyperbolic waves. For example consider the initial value problem Pu = f E e'(RHd), supp f C {t;::: O} u = 0 for t < o. If P( t, x, Dt,x) is a strictly hyperbolic operator or system then the singular support of f gives an upper bound for the singular support of u (Courant-Lax, Lax, Ludwig), namely singsupp u C the union of forward rays passing through the singular support of f.
目次
On the interaction of conormal waves for semilinear wave equations.- Regularity of nonlinear waves associated with a cusp.- Evolution of a punctual singularity in an Eulerian flow.- Water waves, Hamiltonian systems and Cauchy integrals.- Infinite gain of regularity for dispersive evolution equations.- On the fully non-linear Cauchy problem with small data. II.- Interacting weakly nonlinear hyperbolic and dispersive waves.- Nonlinear resonance can create dense oscillations.- Lower bounds of the life-span of small classical solutions for nonlinear wave equations.- Propagation of stronger singularities of solutions to semilinear wave equations.- Conormality, cusps and non-linear interaction.- Quasimodes for the Laplace operator and glancing hypersurfaces.- A decay estimate for the three-dimensional inhomogeneous Klein-Gordon equation and global existence for nonlinear equations.- Interaction of singularities and propagation into shadow regions in semilinear boundary problems.
- 巻冊次
-
: gw ISBN 9783540975915
内容説明
The behaviour of linear hyperbolic waves has been analyzed by decomposing the waves into pieces in space-time and into different frequencies. The linear nature of the equations involved allows the reassembling of the pieces in a simple fashion; the individual pieces do not interact. For nonlinear waves the interaction of the pieces seemed to preclude such an analysis, but in the late 1970s it was shown that a similar procedure could be undertaken in this case and would yield important information. The analysis of the decomposed waves, and of waves with special smoothness or size in certain directions, has been fruitful in describing a variety of the properties of nonlinear waves. This volume presents a number of articles on topics of current interest which involves the use of the newer techniques on nonlinear waves. The results established include descriptions of the smoothness of such waves as determined by their geometry, the properties of solutions with high frequency oscillations, and the longtime smoothness and size estimates satisfied by nonlinear waves.
This book of proceedings on analysis, partial differential equations and mathematical physics is intended for mathematicians and physicists.
「Nielsen BookData」 より