Rough sets : theoretical aspects of reasoning about data
Author(s)
Bibliographic Information
Rough sets : theoretical aspects of reasoning about data
(Theory and decision library, Ser. D . System theory,
Kluwer Academic Publishers, c1991
Available at / 46 libraries
-
No Libraries matched.
- Remove all filters.
Note
Includes bibliographical references and index
Description and Table of Contents
Description
To-date computers are supposed to store and exploit knowledge. At least that is one of the aims of research fields such as Artificial Intelligence and Information Systems. However, the problem is to understand what knowledge means, to find ways of representing knowledge, and to specify automated machineries that can extract useful information from stored knowledge. Knowledge is something people have in their mind, and which they can express through natural language. Knowl edge is acquired not only from books, but also from observations made during experiments; in other words, from data. Changing data into knowledge is not a straightforward task. A set of data is generally disorganized, contains useless details, although it can be incomplete. Knowledge is just the opposite: organized (e.g. laying bare dependencies, or classifications), but expressed by means of a poorer language, i.e. pervaded by imprecision or even vagueness, and assuming a level of granularity. One may say that knowledge is summarized and organized data - at least the kind of knowledge that computers can store.
Table of Contents
I. Theoretical Foundations.- 1. Knowledge.- 1.1. Introduction.- 1.2. Knowledge and Classification.- 1.3. Knowledge Base.- 1.4. Equivalence, Generalization and Specialization of Knowledge.- Summary.- Exercises.- References.- 2. Imprecise Categories, Approximations and Rough Sets.- 2.1. Introduction.- 2.2. Rough Sets.- 2.3. Approximations of Set.- 2.4. Properties of Approximations.- 2.5. Approximations and Membership Relation.- 2.6. Numerical Characterization of Imprecision.- 2.7. Topological Characterization of Imprecision.- 2.8. Approximation of Classifications.- 2.9. Rough Equality of Sets.- 2.10. Rough Inclusion of Sets.- Summary.- Exercises.- References.- 3. Reduction of Knowledge.- 3.1. Introduction.- 3.2. Reduct and Core of Knowledge.- 3.3. Relative Reduct and Relative Core of Knowledge.- 3.4. Reduction of Categories.- 3.5. Relative Reduct and Core of Categories.- Summary.- Exercises.- References.- 4. Dependencies in Knowledge Base.- 4.1. Introduction.- 4.2. Dependency of Knowledge.- 4.3. Partial Dependency of Knowledge.- Summary.- Exercises.- References.- 5. Knowledge Representation.- 5.1. Introduction.- 5.2. Examples.- 5.3. Formal Definition.- 5.4. Significance of Attributes.- 5.5. Discernibility Matrix.- Summary.- Exercises.- References.- 6. Decision Tables.- 6.1. Introduction.- 6.2. Formal Definition and Some Properties.- 6.3. Simplification of Decision Tables.- Summary.- Exercises.- References.- 7. Reasoning about Knowledge.- 7.1. Introduction.- 7.2. Language of Decision Logic.- 7.3. Semantics of Decision Logic Language.- 7.4. Deduction in Decision Logic.- 7.5. Normal Forms.- 7.6. Decision Rules and Decision Algorithms.- 7.7. Truth and Indiscernibility.- 7.8. Dependency of Attributes.- 7.9. Reduction of Consistent Algorithms.- 7.10. Reduction of Inconsistent Algorithms.- 7.11. Reduction of Decision Rules.- 7.12. Minimization of Decision Algorithms.- Summary.- Exercises.- References.- II. Applications.- 8. Decision Making.- 8.1. Introduction.- 8.2. Optician's Decisions Table.- 8.3. Simplification of Decision Table.- 8.4. Decision Algorithm.- 8.5. The Case of Incomplete Information.- Summary.- Exercises.- References.- 9. Data Analysis.- 9.1. Introduction.- 9.2. Decision Table as Protocol of Observations.- 9.3. Derivation of Control Algorithms from Observation.- 9.4. Another Approach.- 9.5. The Case of Inconsistent Data.- Summary.- Exercises.- References.- 10. Dissimilarity Analysis.- 10.1. Introduction.- 10.2. The Middle East Situation.- 10.3. Beauty Contest.- 10.4. Pattern Recognition.- 10.5. Buying a Car.- Summary.- Exercises.- References.- 11. Switching Circuits.- 11.1. Introduction.- 11.2. Minimization of Partially Defined Switching Functions.- 11.3. Multiple-Output Switching Functions.- Summary.- Exercises.- References.- 12. Machine Learning.- 12.1. Introduction.- 12.2. Learning From Examples.- 12.3. The Case of an Imperfect Teacher.- 12.4. Inductive Learning.- Summary.- Exercises.- References.
by "Nielsen BookData"