Lectures on homotopy theory
著者
書誌事項
Lectures on homotopy theory
(North-Holland mathematics studies, 171)
North-Holland , Distributors for the U.S. and Canada, Elsevier Science Pub. Co., 1992
大学図書館所蔵 全47件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
An expanded version of lectures given at the Scuola Matematica Interuniversitaria, in Perugia, during the summer of 1989
Includes bibliographical references and index
内容説明・目次
内容説明
The central idea of the lecture course which gave birth to this book was to define the homotopy groups of a space and then give all the machinery needed to prove in detail that the nth homotopy group of the sphere Sn, for n greater than or equal to 1 is isomorphic to the group of the integers, that the lower homotopy groups of Sn are trivial and that the third homotopy group of S2 is also isomorphic to the group of the integers. All this was achieved by discussing H-spaces and CoH-spaces, fibrations and cofibrations (rather thoroughly), simplicial structures and the homotopy groups of maps.Later, the book was expanded to introduce CW-complexes and their homotopy groups, to construct a special class of CW-complexes (the Eilenberg-Mac Lane spaces) and to include a chapter devoted to the study of the action of the fundamental group on the higher homotopy groups and the study of fibrations in the context of a category in which the fibres are forced to live; the final material of that chapter is a comparison of various kinds of universal fibrations. Completing the book are two appendices on compactly generated spaces and the theory of colimits. The book does not require any prior knowledge of Algebraic Topology and only rudimentary concepts of Category Theory are necessary; however, the student is supposed to be well at ease with the main general theorems of Topology and have a reasonable mathematical maturity.
目次
1. Homotopy Groups. 1.1 Function Spaces. 1.2 H-Spaces and CoH-Spaces. 1.3 Homotopy Groups. 2. Fibrations and Cofibrations. 2.1 Pullbacks and Pushouts. 2.2 Fibrations. 2.3 Cofibrations. 2.4 Applications of the Mapping Cylinder. 3. Exact Homotopy Sequences. 3.1 Exact Sequence of a Map: Covariant Case. 3.2 Exact Sequence of a Map: Contravariant Case. 4. Simplicial Complexes. 4.1 Simplicial Complexes. 4.2 Simplicial Approximation Theorem. 4.3 Polyhedra. 4.4 Fibrations and Polyhedra. 5. Relative Homotopy Groups. 5.1 Homotopy Groups of Maps. 5.2 Quasifibrations. 5.3 Some Homotopy Groups of spheres. 6. Homotopy Theory of CW-complexes. 6.1 CW-complexes. 6.2 Homotopy theory of CW-complexes. 6.3 Eilenberg-Mac Lane spaces. 7. Fibrations revisited. 7.1 Sections of fibrations. 7.2 F-fibrations. 7.3 Universal F-fibrations. Appendix: Colimits. Compactly generated spaces. Index.
「Nielsen BookData」 より