Quasiconformal space mappings : a collection of surveys, 1960-1990
Author(s)
Bibliographic Information
Quasiconformal space mappings : a collection of surveys, 1960-1990
(Lecture notes in mathematics, 1508)
Springer-Verlag, c1992
- : gw
- : us
Available at 81 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
-
Library & Science Information Center, Osaka Prefecture University
: gwNDC8:410.8||||10009871571
Note
Includes bibliographical references
Description and Table of Contents
Description
This volume is a collection of surveys on function theory in
euclidean n-dimensional spaces centered around the theme of
quasiconformal space mappings. These surveys cover or are
related to several topics including inequalities for
conformal invariants and extremal length, distortion
theorems, L(p)-theory of quasiconformal maps, nonlinear
potential theory, variational calculus, value distribution
theory of quasiregular maps, topological properties of
discrete open mappings, the action of quasiconformal maps in
special classes of domains, and global injectivity theorems.
The present volume is the first collection of surveys on
Quasiconformal Space Mappings since the origin of the theory
in 1960 and this collection provides in compact form access
to a wide spectrum of recent results due to well-known
specialists.
CONTENTS: G.D. Anderson, M.K. Vamanamurthy, M. Vuorinen:
Conformal invariants, quasiconformal maps and special
functions.- F.W. Gehring: Topics in quasiconformal
mappings.- T.Iwaniec: L(p)-theory of quasiregular
mappings.- O. Martio: Partial differential equations and
quasiregular mappings.- Yu.G. Reshetnyak: On functional
classes invariant relative to homothetics.- S. Rickman:
Picard's theorem and defect relation for quasiconformal
mappings.- U. Srebro: Topological properties of quasiregular
mappings.- J. V{is{l{: Domains and maps.- V.A. Zorich: The
global homeomorphism theorem for space quasiconformal
mappings, its development and related open problems.
Table of Contents
Conformal invariants, quasiconformal maps, and special functions.- Topics in quasiconformal mappings.- L p -theory of quasiregular mappings.- Partial differential equations and quasiregular mappings.- On functional classes invariant relative to homotheties.- Picard's theorem and defect relation for quasiregular mappings.- Topological properties of quasiregular mappings.- Domains and maps.- The global homeomorphism theorem for space quasiconformal mappings, its development and related open problems.
by "Nielsen BookData"