Vector-valued functions and their applications
著者
書誌事項
Vector-valued functions and their applications
(Mathematics and its applications, . Chinese series ; 3)
Kluwer Academic Publishers, c1992
大学図書館所蔵 全25件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references (p. [151]-153) and indexes
内容説明・目次
内容説明
This book is the first to be devoted to the theory of vector-valued functions with one variable. This theory is one of the fundamental tools employed in modern physics, the spectral theory of operators, approximation of analytic operators, analytic mappings between vectors, and vector-valued functions of several variables.
The book contains three chapters devoted to the theory of normal functions, Hp-space, and vector-valued functions and their applications. Among the topics dealt with are the properties of complex functions in a complex plane and infinite-dimensional spaces, and the solution of vector-valued integral equations and boundary value problems by complex analysis and functional analysis, which involve methods which can be applied to problems in operations research and control theory. Much original research is included.
This volume will be of interest to those whose work involves complex analysis and control theory, and can be recommended as a graduate text in these areas.
目次
Series Editor's Preface. Preface. 1. Theory of Normal Families. 1. Preliminaries. 2. The Normal Family of Meromorphic Functions. 3. The Distance of a Family of Functions at a Point. 4. On Meromorphic Functions with Deficient Values. 5. The Applications of the Theory of Normal Families. 6. Application to Univalent Functions. 2: HpSpace. 1. Harmonic and Subharmonic Functions. 2. The Basic Structure of Hp. 3. Hp is a Banach Space. 3: Vector-Valued Analysis. 1. Vector-Valued Functions. 2. Vector-Valued Boundary Value Problems. 3. Analysis of Locally Convex Spaces. Bibliography. Index of Symbols. Index.
「Nielsen BookData」 より