The inverse problem of the calculus of variations for ordinary differential equations
著者
書誌事項
The inverse problem of the calculus of variations for ordinary differential equations
(Memoirs of the American Mathematical Society, no. 473)
American Mathematical Society, 1992
大学図書館所蔵 全22件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
"July 1992, volume 98, number 473 (end of volume)"
Includes bibliographical references (p. 108-110)
内容説明・目次
内容説明
This monograph explores various aspects of the inverse problem of the calculus of ariations for systems of ordinary differential equations. The main problem centres on determining the existence and degree of generality of Lagrangians whose system of Euler-Lagrange equations coicides with a given system of ordinary differential equations. The authors rederive the basic necessary and sufficient conditions of Douglas for second order equations and extend them to equations of higher order using methods of the variational bicomplex of Tulcyjew, Vinogradov, and Tsujishita. What emerges is a fundamental dichotomy between second and higher order systems: the most general Lagranigian for any higher order system can depend only upon finitely many constants. The authors present an algorithm, based upon exterior differential systems techniques, for solving the inverse problem for second order equations. a number of new examples illustrate the effectiveness of this approach. The monogrpah also contains a study of the inverse problem for a pair of geodesic equations arising from a two dimensional symmetric affine connection.
「Nielsen BookData」 より