The inverse problem of the calculus of variations for ordinary differential equations
Author(s)
Bibliographic Information
The inverse problem of the calculus of variations for ordinary differential equations
(Memoirs of the American Mathematical Society, no. 473)
American Mathematical Society, 1992
Available at 22 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
"July 1992, volume 98, number 473 (end of volume)"
Includes bibliographical references (p. 108-110)
Description and Table of Contents
Description
This monograph explores various aspects of the inverse problem of the calculus of ariations for systems of ordinary differential equations. The main problem centres on determining the existence and degree of generality of Lagrangians whose system of Euler-Lagrange equations coicides with a given system of ordinary differential equations. The authors rederive the basic necessary and sufficient conditions of Douglas for second order equations and extend them to equations of higher order using methods of the variational bicomplex of Tulcyjew, Vinogradov, and Tsujishita. What emerges is a fundamental dichotomy between second and higher order systems: the most general Lagranigian for any higher order system can depend only upon finitely many constants. The authors present an algorithm, based upon exterior differential systems techniques, for solving the inverse problem for second order equations. a number of new examples illustrate the effectiveness of this approach. The monogrpah also contains a study of the inverse problem for a pair of geodesic equations arising from a two dimensional symmetric affine connection.
by "Nielsen BookData"