Theory and applications of convolution integral equations
著者
書誌事項
Theory and applications of convolution integral equations
(Mathematics and its applications, v. 79)
Kluwer Academic Publishers, c1992
大学図書館所蔵 全25件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Rev., enl., updated ed. of: Convolution integral equations, with special function kernels. c1977
Includes bibliographical references (p. 195-229) and indexes
内容説明・目次
内容説明
One service mathematics has rendered the 'Et moi ...* si favait su comment en revenir, je human race. It has put common sense back n'y serais point a1l6.' lules Verne where it belongs, on the topmost shelf next to the dusty eanister labelled 'discarded nonsense' . Erie T. Bell The series is divergent; therefore we may be able to do something with it O. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and nonlineari- ties abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sci- ences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One ser- vice topology has rendered mathematical physics ...'; 'One service logic has rendered computer science ...'; 'One service category theory has rendered mathematics ...'. All arguably true. And all statements obtainable this way form part of the raison d'etre of this series. This series, Mathematics and Its Applications, started in 1977. Now that over one hundred volumes have appeared it seems opportune to reexamine its scope.
At the time I wrote "Growing specia1ization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the 'tree' of knowledge of mathematics and It also happens, quite often in related fields does not grow only by putting forth new branches.
目次
Preface. Introduction. 1. Preliminaries on Special Function Kernels. 2. Basic Properties and Theorems. 3. Methods and Illustrative Examples. 4. Miscellaneous Results and Open Questions. 5. Equations of the Second and Other Kinds. 6. Convolutions over Other Intervals. Appendix: List of Symbols. Inversion Tables. Bibliography. Author Index. Subject Index.
「Nielsen BookData」 より