Degree theory for equivariant maps, the general S[1]-action
著者
書誌事項
Degree theory for equivariant maps, the general S[1]-action
(Memoirs of the American Mathematical Society, no. 481)
American Mathematical Society, 1992
大学図書館所蔵 全18件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references (p. 177-179)
"November 1992, volume 100, number 481 (end of volume)"
内容説明・目次
内容説明
This work is devoted to a detailed study of the equivariant degree and its applications for the case of an $S^1$-action. This degree is an element of the equivariant homotopy group of spheres, which are computed in a step-by-step extension process. Applications include the index of an isolated orbit, branching and Hopf bifurcation, and period doubling and symmetry breaking for systems of autonomous differential equations. The authors have paid special attention to making the text as self-contained as possible, so that the only background required is some familiarity with the basic ideas of homotopy theory and of Floquet theory in differential equations. Illustrating in a natural way the interplay between topology and analysis, this book will be of interest to researchers and graduate students.
目次
Preliminaries Extensions of $S^1$-maps Homotopy groups of $S^1$-maps Degree of $S^1$-maps $S^1$-index of an isolated non-stationary orbit and applications Index of an isolated orbit of stationary solutions and applications Virtual periods and orbit index Appendix: Additivity up to one suspension.
「Nielsen BookData」 より