Averaging in stability theory : a study of resonance multi-frequency systems
著者
書誌事項
Averaging in stability theory : a study of resonance multi-frequency systems
(Mathematics and its applications, . Soviet series ; 79)
Kluwer Academic Publishers, c1993
- タイトル別名
-
Usrednenie v teorii ustoĭchivosti
大学図書館所蔵 全20件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Rev. translation of: Usrednenie v teorii ustoĭchvosti
Bibliography: p. 263-274
Includes index
内容説明・目次
内容説明
One service mathematics has rmdcred the 'Et moi, .*.* si j'avait su comment en rcvenir. human race. It has put common sense back je n'y semis point aile.' whc:rc it belongs, on the topmost shcIl next Jules Verne to the dusty callister labc:1lcd 'discarded non- sense'. The series is divergent; thererore we may be Eric T. Bell able to do something with iL O. Hcavisidc Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non- linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics ...'; 'One service logic has rendered com- puter science ...'; 'One service category theory has rendered mathematics ...'. All arguably true. And alI statements obtainable this way form part of the raison d'etre of this series.
目次
Preface. 1. Averaging in One and Multifrequency Systems of Ordinary Differential Equations. 2. Generalization of Lyapunov's Second Method and Averaging in Stability Theory. 3. Investigation of the Stability of Systems of Ordinary Differential Equations with Quasi-Periodic Coefficients. 4. Investigation of Stability in Multi-Frequency Systems. 5. Investigation of Orbit Stability in the Three Body Problem of Celestial Mechanics Based on the Point Model and on the Model Allowing for Asymmetry in the Distribution of Planet Masses and for the Conservation of Angual Momentum. 6. Investigation of Stability with Account Taken of the Admissible Region of Motions. Investigation of the Stability of a Gyroscope with a No-Contact Suspension. 7. Averaging and Stability Investigation in Systems of Equations with Delay. 8. On Investigation of Stability in Parial Derivative Equations. 9. Investigation of Stability in Stable Systems under Small Random Disturbances. References.
「Nielsen BookData」 より