書誌事項

Hyperbolic geometry

Birger Iversen

(London Mathematical Society student texts, 25)

Cambridge University Press, c1992

  • : hard
  • : pbk

大学図書館所蔵 件 / 66

この図書・雑誌をさがす

注記

Includes bibliographical references and index

内容説明・目次

内容説明

Although it arose from purely theoretical considerations of the underlying axioms of geometry, the work of Einstein and Dirac has demonstrated that hyperbolic geometry is a fundamental aspect of modern physics. In this book, the rich geometry of the hyperbolic plane is studied in detail, leading to the focal point of the book, Poincare's polygon theorem and the relationship between hyperbolic geometries and discrete groups of isometries. Hyperbolic 3-space is also discussed, and the directions that current research in this field is taking are sketched. This will be an excellent introduction to hyperbolic geometry for students new to the subject, and for experts in other fields.

目次

  • Introduction
  • 1. Quadratic Forms
  • 2. Geometries
  • 3. Hyperbolic Plane
  • 4. Fuchsian Groups
  • 5. Fundamental Domains
  • 6. Coverings
  • 7. Poincare's Theorem
  • 8. Hyperbolic 3-Space
  • Appendix: Axioms for Plane Geometry.

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示

詳細情報

  • NII書誌ID(NCID)
    BA19409840
  • ISBN
    • 0521435080
    • 0521435285
  • LCCN
    92029634
  • 出版国コード
    uk
  • タイトル言語コード
    eng
  • 本文言語コード
    eng
  • 出版地
    Cambridge
  • ページ数/冊数
    xiv, 298 p.
  • 大きさ
    23 cm
  • 分類
  • 件名
  • 親書誌ID
ページトップへ