Arithmetic, proof theory, and computational complexity
著者
書誌事項
Arithmetic, proof theory, and computational complexity
(Oxford logic guides, 23)
Clarendon Press, 1993
大学図書館所蔵 全41件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes references
内容説明・目次
内容説明
This book principally concerns the rapidly growing area of what might be termed "Logical Complexity Theory", the study of bounded arithmetic, propositional proof systems, length of proof, etc and relations to computational complexity theory. Issuing from a two-year NSF and Czech Academy of Sciences grant supporting a month-long workshop and 3-day conference in San Diego (1990) and Prague (1991), the book contains refereed articles concerning the existence of the
most general unifier, a special case of Kreisel's conjecture on length-of-proof, propositional logic proof size, a new alternating logtime algorithm for boolean formula evaluation and relation to branching programs, interpretability between fragments of arithmetic, feasible interpretability, provability
logic, open induction, Herbrand-type theorems, isomorphism between first and second order bounded arithmetics, forcing techniques in bounded arithmetic, ordinal arithmetic in o . Also included is an extended abstract of J P Ressayre's new approach concerning the model completeness of the theory of real closed expotential fields. Additional features of the book include (1) the transcription and translation of a recently discovered 1956 letter from K Godel to J von
Neumann, asking about a polynomial time algorithm for the proof in k-symbols of predicate calculus formulas (equivalent to the P-NP question), (2) an OPEN PROBLEM LIST consisting of 7 fundamental and 39 technical questions contributed by many researchers, together with a bibliography of relevant references.
目次
- Preface
- 1. Open Problems
- 2. Note on the Existence of Most General Semi-unifiers
- 3. Kreisel's Conjecture for L31 (including a postscript by George Kreisel)
- 4. Number of Symbols in Frege Proofs with and without the Deduction Rule
- 5. Algorithm for Boolean Formula Evolution and for Tree Contraction
- 6. Provably Total Functions in Bounded Arithmetic Theories Ri3, Ui2 and Vi2
- 7. On Polynomial Size Frege Proofs of Certain Combinatorial Principles
- 8. Interpretability and Fragments of arithmetic
- 9. Abbreviating Proofs Using Metamathematical Rules
- 10. Open Induction, Tennenbaum Phenomena, and Complexity Theory
- 11. Using Herbrand-type Theorems to Separate Strong Fragments of Arithmetic
- 12. An Equivalence between Second Order Bounded Domain Bounded Arithmetic and First Order Bounded Arithmetic
- 13. Integer Parts of Real Closed Exponential Fields (extended abstract)
- 14. Making Infinite Structures Finite in Models of Second Order Bounded Arithmetic
- 15. Ordinal Arithmetic in I
- 16. RSUV Isomorphism
- 17. Feasible Interpretability
「Nielsen BookData」 より