Markov cell structures near a hyperbolic set
Author(s)
Bibliographic Information
Markov cell structures near a hyperbolic set
(Memoirs of the American Mathematical Society, no. 491)
American Mathematical Society, 1993
Access to Electronic Resource 1 items
Available at 17 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
"May 1993, volume 103, number 491 (second of 4 numbers)"--T.p
Includes bibliographical references
Description and Table of Contents
Description
Let F: M - M denote a self-diffeomorphism of the smooth manifold M and let *L M denote a hyperbolic set for F . Roughly speaking, a Markov cell structure for F: M M near *L is a finite cell structure C for a neighbourhood of *L in M such that, for each cell *e *E C, the image under F of the unstable factor of *e is equal to the union of the unstable factors of a subset of C, and the image of the stable factor of *e under F ]x1 is equal to the union of the stable factors of a subset of C . The main result of this work is that for some positive integer q, the diffeomorphism F ]xq: M - M has a Markov cell structure near *L. A list of open problems related to Markov cell structures and hyperbolic sets can be found in the final section of the book.
by "Nielsen BookData"