Coarse cohomology and index theory on complete Riemannian manifolds

Author(s)
Bibliographic Information

Coarse cohomology and index theory on complete Riemannian manifolds

John Roe

(Memoirs of the American Mathematical Society, no. 497)

American Mathematical Society, 1993

Search this Book/Journal
Note

"July 1993, volume 104, number 497 (fourth of 6 numbers)"--T.p

Includes bibliographical references (p. 87-90)

Description and Table of Contents

Description

Coarse geometry'' is the study of metric spaces from the asymptotic point of view: two metric spaces (such as the integers and the real numbers) which look the same from a great distance'' are considered to be equivalent. This book develops a cohomology theory appropriate to coarse geometry. The theory is then used to construct higher indices'' for elliptic operators on noncompact complete Riemannian manifolds. Such an elliptic operator has an index in the $K$-theory of a certain operator algebra naturally associated to the coarse structure, and this $K$-theory then pairs with the coarse cohomology. The higher indices can be calculated in topological terms thanks to the work of Connes and Moscovici. They can also be interpreted in terms of the $K$-homology of an ideal boundary naturally associated to the coarse structure. Applications to geometry are given, and the book concludes with a discussion of the coarse analog of the Novikov conjecture.

by "Nielsen BookData"

Related Books: 1-1 of 1
Details
Page Top