Continuous images of arcs and inverse limit methods
Author(s)
Bibliographic Information
Continuous images of arcs and inverse limit methods
(Memoirs of the American Mathematical Society, no. 498)
American Mathematical Society, 1993
Available at 18 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
"July 1993, volume 104, number 498 (fifth of 6 numbers)"--T.p
Includes bibliographical references (p. 77-80)
Description and Table of Contents
Description
Continuous images of ordered continua have been studied intensively since 1960, when S. Mardsic showed that the classical Hahn-Mazukiewicz theorem does not generalize in the 'natural' way to the non metric case. In 1986, Nikiel characterized acyclic images of arcs as continua which can be approximated from within by a sequence of well-placed subsets which he called T-sets. That characterization has been used to answer a host of outstanding questions in the area. In this book, Nikiel, Tymchatyn, and Tuncali study images of arcs using T-set approximations and inverse limits with monotone bonding maps. A number of important theorems on Peano continua are extended to images of arcs. Some of the results presented here are new even in the metric case.
Table of Contents
Introduction Cyclic elements in locally connected continua T-sets in locally connected continua T-maps, T-approximations and continuous images of arcs Inverse sequences of images of arcs $1$-dimensional continuous images of arcs Totally regular continua Monotone images $\sigma$-directed inverse limits References.
by "Nielsen BookData"