Flame-retardant polymeric materials
Author(s)
Bibliographic Information
Flame-retardant polymeric materials
Plenum Press, c1975-c1982
- v. 1
- v. 2
- v. 3
Available at / 13 libraries
-
Graduate School of Pharmaceutical Sciences, Pharmaceutical Sciences Library, University of Tokyo図書
[v. 1]575:L585800019035
-
Tokyo University of Agriculture and Technology Koganei Library
v. 1578/FP150520916,
v. 3578/FP350174722 -
No Libraries matched.
- Remove all filters.
Note
Includes bibliographical references and indexes
Description and Table of Contents
- Volume
-
v. 1 ISBN 9780306308406
Description
Flammability has been recognized as an increasingly important social and scientific problem. Fire statistics in the United States (Report of the National Commission on Fire Prevention and Control. "America Burning:' 1973) emphasized the vast devastation to life and property--12.000 lives lost annually due to fire. and these deaths are usually caused by inhaling smoke or toxic gases: 300.000 fire injuries: 11.4 billion dollars in fire cost at which 2.7 billion dollars is related to property loss: a billion dollars to burn injury treatment: and 3.3 billion dollars in productivity loss. It is obvious that much human and economic misery can be attributed to fire situations. In relation to this. polymer flammability has been recognized as an in- creasingly important social and scientific problem. The development of flame-retardant polymeric materials is a current example where the initia- tive for major scientific and technological developments is motivated by sociological pressure and legislation. This is part of the important trend toward a safer environment and sets a pattern for future example. Flame retardancy deals with our basic everyday life situations-housing. work areas. transportation.
clothing and so forth-the "macroenvironment" capsule within which "homosapiens" live. As a result. flame-retardant polymers are now emerging as a specific class of materials leading to new and diversified scientific and technological ventures.
Table of Contents
1Combustion of Polymers and Its Retardation.- 2 Brief Description of the Phases of Polymer Degradation and Combustion.- 2.1 Thermal Degradation of Polymers.- 2.2 Thermal-Oxidative Degradation of Polymers.- 3. Analysis of the Combustion Process and Pertinent Aspects of Flame Retardation.- 3.1 Basic Features of Flame Retardancy.- 3.2 Additional Features of Flame-Retarding Compositions.- 3.3 Polymer Properties Which Affect the Heating and Combustion Processes.- 4. Semiquantitative Evaluation of Polymer Flammability: The Limiting Oxygen Index (LOI).- 2Technology and Test Methods of Flameproofing of Cellulosics.- 1 Introduction.- 2 Nondurable Flame Retardants.- 2.1 Group I.- 2.2 Group II.- 2.3 Group III.- 3. Semidurable Flame Retardants.- 3.1. Titanium and Antimony Compounds.- 3.2. Metallic Oxide and Halogenated Organic Binder Compositions.- 4 Flame-Resistant Cotton Flote.- 5 Durable Flame Retardants.- 5.1 Phosphorylation.- 5.2 Sulfation.- 5.3 Combined Sulfation-Phosphorylation.- 5.4 Mesylation and Tosylation.- 5.5 Phosphoric and Phosphorous Acid Derivatives.- 5.6 Phosphonitrilic Halides and Their Derivatives.- 5.7 Phosphines and Phosphine Oxides.- 5.8 Phosphonium Salts.- 5.9 Phosphinic Acid and Its Derivatives.- 5.10 Phosphonic Acid Derivatives.- 5.11 Phosphorus-Containing Triazines.- 6. Halogens as Flame Retardants.- 6.1 Activity of Bromine and Chlorine Compounds.- 6.2 Synergism.- 6.3 Brominated Lignin and Cellulose.- 7. Flame-Retardant Treatment of Wood, Board, and Paper.- 7.1 Flame-Retardant Requirements.- 7.2 Treating Processes.- 7.3 Properties of Flame-Retardant Wood.- 7.4 Recent Developments.- 8. Testing Methods.- 8.1 Textiles.- 8.2 Testing of Paper and Paper Laminates.- 8.3 Wood-Base Materials.- 8.4 Need for Flammability Testing of Environment.- 9. References.- 3 Flame Retardance of Protein Fibers.- 1 The Structure of Protein Fibers.- 2 Flammability of Wool.- 3 Mechanism of Thermal Degradation and Combustion.- 4 Smoke Emission and Toxic Fumes.- 5 Mechanism of Flame Retardancy.- 6 Flame-Retardant Treatments.- 6.1. Nondurable Treatments.- 6.2 Phosphorus-Based Treatments.- 6.3 Metal Compounds.- 6.4 Chemical Modification of Wool.- 6.5 Wool Flame-Resistant Man-Made Fiber Blends.- 7. References.- 4 Flame-Retardant Polyethylene Terephthalate Fibers.- 1 Introduction.- 2 Nonreactive Additives.- 2.1 Halogen.- 2.2 Phosphorus.- 2.3 Phosphorus-Halogen Combinations.- 2.4 Special Techniques.- 3 Ethylene Terephthalate Copolymers.- 4 Fiber and Fabric Treatments.- 5 Fabric Flammability.- 6 References.- 5 Flame Retardance of Rubbers.- 1 Introduction.- 2 Nature of Burning of Rubber.- 3 Flammability Testing.- 4 Smoke Generation.- 5 Flame Retardancy of Rubbers.- 6 Commercial Rubbers.- 6.1 Natural Rubber (NR).- 6.2 Synthetic m-Polyisoprene.- 6.3 SBR.- 6.4 Polybutadiene Rubber.- 6.5 Butyl.- 6.6 EPMandEPDM.- 6.7 Nitrile.- 6.8 Neoprene.- 6.9 Thiokol.- 6.10 Chlorohydrin Rubbers (ECO).- 6.11 Silicone Rubbers (MQR).- 6.12 Hypalon Rubber (CSM).- 6.13 Fluorocarbon Rubber (FKM).- 7. Conclusion.- 8. References.- 6 Retardation of Combustion of Polyamides.- 1.Introduction.- 2. Factors Affecting the Combustion and Related Processes of Polyamides.- 2.1 Heating.- 2.2 Transitions.- 2.3 Degradation.- 2.4 Decomposition.- 2.5 Oxidation.- 2.6 Ignition.- 2.7 Combustion.- 2.8 Propagation.- 3. Thermal and Thermal-Oxidative Degradation of Different Polyamides.- 3.1 Nylon6, 6-6, and 6-10.- 3.2 Less Common Polyamides.- 4. Assessment of Physicochemical Changes in Degrading Polyamides.- 4.1 Thermogravimetric Analysis (TGA).- 4.2 Differential Thermal Analysis (DTA).- 4.3 Infrared Spectroscopy (IR).- 4.4 Mass Spectrometry (MS).- 4.5 Pyrolysis-Gas Chromatography (P-GC).- 4.6 Electron Spin Resonance (ESR).- 4.7 Nuclear Magnetic Resonance (NMR).- 4.8 Other Techniques.- 5. Stabilization Against Combustion.- 5.1 Use of Additive-Type Stabilizers and Flame Retardants.- 5.2 Modification of Existing Polyamides.- 5.3 Synthesis of Structurally Modified Polyamides.- 5.4 Synthesis of High-Temperature Polyamides.- 6. New Trends.- 7. Conclusion.- 8. References.- 7 Relationship Between Chemical Structure and Flammability Resistance of Polyurethanes.- 1 Introduction.- 2 Effect of Structure on Flammability of Urethane Foams.- 2 Modified Urethane Foams.- 4 References.- 8 Retardation of Combustion of Phenolic, Urea-Formaldehyde, Epoxy, and Related Resin Systems.- 1 Introduction.- 2. Phenolic Resins.- 2.1. Flame Retardation in Phenolic Resins.- 3. Furan Resins.- 3.1. Flame Retardation in Furan Resins.- 4. Urea-Formaldehyde Resins.- 4.1. Flame-Retardation Applications of Urea-Formaldehyde Resins.- 5. Melamine Resins.- 5.1. Flame-Retardation Applications of Melamine Resins.- 6. Epoxy Resins.- 6.1. Flame Retardation in Epoxy Resins.- 7. Summary.- 8. References.- 9 Candle-Type Test for Flammability of Polymers.- 1. Flammability Measurements.- 2. Critical Oxygen Indexes of Polymers.- 2.1. Effect of Some Variables on the Oxygen Index.- 3. A Candle Model of a Burning Polymer.- 4. Polyethylene Burning and a Possible Limitation of the Candle Model.- 5. Modes of Inhibiting the Flammability of Candle-Burning Polymers.- 6. Inhibition by Antimony.- 7. Inhibition by Chlorine.- 8. Inhibition by Dripping.- 9. Inhibition by Fillers.- 10. References.- 10 Flame-Retardant Organic Coatings.- 1 Introduction.- 2 Architectural Coatings.- 2.1 Nonintumescent Flame-Retardant Coatings.- 2.2 Intumescent Coatings.- 3. Fabric Coatings.- 3.1 Polyvinyl Chloride Fabric Coatings.- 3.2 Polyurethane Fabric Coatings.- 3.3Other Coatings Suitable for Fabrics.- 4. Heat-Resistant Organic Coatings.- 4.1 Polyimide Coatings.- 4.2 Silicone Coatings.- 4.3 Fluoropolymers.- 5. References.
- Volume
-
v. 2 ISBN 9780306322129
Description
Flammability has been recognized as an increasingly important social and scientific problem. Fire statistics in the United States (Report of the National Commission on Fire Prevention and Control, "America Burning," 1973) emphasized the vast devastation to life and property--12,OOO lives lost annually due to fire, and these deaths are usually caused by inhaling smoke or toxic gases; 300,000 fire injuries; 11.4 billion dollars in fire cost at which 2.7 billion dollars is related to property loss; a billion dollars to burn injury treatment; and 3.3 billion dollars in productivity loss. It is obvious that much human and economic misery can be attributed to fire situations. In relation to this, polymer flammability has been recognized as an in- creasingly important social and scientific problem. The development of flame-retardant polymeric materials is a current example where the initia- tive for major scientific and technological developments is motivated by sociological pressure and legislation. This is part of the important trend toward a safer environment and sets a pattern for future example.
Flame retardancy deals with our basic everyday life situations-housing, work areas, transportation, clothing and so forth-the "macroenvironment" capsule within which "homosapiens" live. As a result, flame-retardant polymers are now emerging as a specific class of materials leading to new and diversified scientific and technological ventures.
Table of Contents
1 Structure, Pyrolysis, and Flammability of Cellulose.- 1. Introduction.- 2. The Fine Structure of Cellulose.- 3. The Major Products of Cellulose Pyrolysis: Levoglucosan and Char.- 3.1. Levoglucosan Formation.- 3.2. Other Products.- 3.3. Char Formation.- 4. Vacuum Pyrolysis.- 4.1. Mechanism, Rates, and Products.- 4.2. Kinetics.- 4.3. Structural Changes.- 4.4. Thermal Analysis.- 5. Air Pyrolysis.- 5.1. General.- 5.2. Kinetics and Fine Structure.- 5.3. Levoglucosan Formation, Fine Structure, and Combustibility.- 6. Flame Retardancy.- 6.1. Mechanism and Flame-Retardant Structural Considerations.- 6.2. Flame Retardancy and Fine Structure of Cellulose.- 7. References.- 2 Synergism and Flame Retardancy.- 1. Introduction.- 2. Synergism.- 3. Synergistic Reactions in Fire Retardation.- 3.1. Antimony-Halogen Synergism.- 3.2. Phosphorus-Halogen Synergism.- 3.3. Nitrogen-Phosphorus Synergism.- 3.4. Synergism with Free-Radical Initiators.- 3.5. Synergism and Condensed Phase Reactions.- 4. Synergism and Future Studies on Fire Retardation.- 5. References.- 3 Ignition of Polymers.- 1. Introduction.- 2. Autoignition Studies.- 2.1. Experimental Technique.- 2.2. General Kinetic Model of the Ignition Process.- 2.3. Autoignition Data for Single-Component Systems.- 2.4. Effects of Selected Experimental Variables.- 3. Autoignition of Multicomponent Systems.- 3.1. Polymers with Flame-Retardant Additives.- 3.2. Multipolymer Systems.- 4. The State of the Art.- 5. References.- 4 Phosphorus-Based Flame Retardants.- 1. Introduction.- 2. Inorganic Phosphorus Compounds.- 2.1. Red Phosphorus.- 2.2. Ammonium Phosphates.- 2.3. Insoluble Ammonium Polyphosphate.- 2.4. Ammonia-P2O5 Products.- 2.5. Phosphoric-Acid-Based Systems for Cellulosics.- 3. Organic Phosphorus Flame Retardants-Additive Types.- 3.1. Alkyl Acid Phosphates.- 3.2. Trialkyl Phosphates.- 3.3. Dimethyl Methylphosphonate.- 3.4. Halogenated Alkyl Phosphates and Phosphonates.- 3.5. Oligomeric Halogen-Free Phosphorus Esters.- 3.6. Oligomeric Cyclic Phosphonate.- 3.7. Oligomeric Phenylphosphonates.- 3.8. Tricresyl Phosphates and Related Phosphates.- 3.9. Triphenyl Phosphate.- 3.10. Phosphonitrilics.- 3.11. Phosphonium Bromides.- 3.12. Phosphine Oxides.- 4. Organic Phosphorus Compounds-Reactive Types.- 4.1. Organophosphorus Monomers.- 4.2. Phosphorus-Containing Diols and Polyols.- 4.3. Reactive Organophosphorus Compounds in Textile Finishing.- 5. Mode of Action of Phosphorus Flame Retardants.- 5.1. Condensed Phase Mechanisms.- 5.2. Vapor Phase Mechanisms.- 6. Trends and Future Developments.- 7. References.- 5 Flammability of Cotton-Polyester Blend Fabrics.- 1. Theory of Flame-Retardant Action.- 2. Flame-Retardant Treatments for Polyester-Cotton Blends.- 3. References.- 6 Factors Affecting the Combustion of Polystyrene and Styrene.- 1. Introduction.- 2. Physical and Thermal Properties of Polystyrene and Styrene.- 3. The Pyrolysis and Combustion of Polystyrene and Styrene.- 3.1. The Pyrolysis and Combustion of Polymers.- 3.2. The Pyrolysis of Polystyrene.- 3.3. Inhibiting the Pyrolysis of Polystyrene.- 3.4. The Pyrolysis and Combustion of Polystyrene.- 3.5. The Pyrolysis amd Combustion of Styrene Monomer.- 4. The Mechanisms of Flame Retardation.- 4.1. Theories of Flame Retardancy.- 4.2. The Mechanisms of Halogen Flame Retardants.- 5. The Effects of Halogen Flame Retardants on the Combustion of Polystyrene and Styrene.- 6. The Role of Synergists in the Combustion of Styrenic Materials Inhibited by Halogen Compounds.- 7. The Use of Phosphorus Compounds as Flame Retardants for Polystyrene.- 8. Test Methods and Their Usefulness to Combustion Studies.- 9. Conclusions.- 10. References.- 7 Phenolic Fibers.- 1. Introduction.- 2. Preparation of Phenolic Fibers.- 2.1. Selection of Precursor Resin and Spinning Characteristics.- 2.2. Curing Process.- 2.3. Acetylation of Phenolic Fibers.- 3. Properties of Phenolic Fibers.- 3.1. Flame Resistance.- 3.2. Mechanical Properties.- 3.3. Processibility.- 4. Thermal and Chemical Resistance.- 5. Uses.- 5.1. Commercial Uses.- 5.2. Use of Phenolic Fibers as Precursor Fibers.- 6. References.- 8 Flame-Resistant Wool and Wool Blends.- 1. Introduction.- 2. Wool.- 3. Research Strategies for Flame-Resistant Wool.- 3.1. Historical.- 4. Flammability Test Methods.- 5. Inorganic Compounds.- 5.1. Sodium Hydrosulfite-Formaldehyde-Borax Treatment.- 5.2. Phosphoric, Sulfuric, and Sulfamic Acids and Their Salts.- 5.3. Tris(hydroxymethyl)phosphonium Derivatives.- 5.4. Zirconium and Titanium Compounds.- 5.5. Tungsten, Molybdenum, and Vanadium Compounds.- 5.6. Tin Compounds.- 6. Organic Compounds.- 6.1. Tetrabromophthalic Anhydride and Related Compounds.- 6.2. Iodinated Wool.- 6.3. Tris(2,3-dibromopropyl) Phosphate and Related Compounds.- 6.4. Vinyl Phosphonate Esters.- 6.5. Tris(1-aziridinyl) Phosphine Oxide.- 7. Mechanisms of Flame Retardation.- 8. Safety of Flame-Resistant Fabrics.- 9. References.- 9 Smoke and Tenability: A Perspective on the Materials Approach to the Fire Problem.- 1. Introduction: Combustion versus Fire.- 2. Fire: Ignition and Materials.- 3. Smoke: A Hazard Analysis.- 4. Smoke: The Measurement Problem.- 5. Correlation: Studies of Small- and Large-Scale Smoke Tests.- 6. Smoke Hazard Control: The Fire Detector Aspect.- 7. Smoke Hazard: The Materials Perspective.- 8. Smoke Hazard Assessment: Summary.- 9. References.
- Volume
-
v. 3 ISBN 9780306408687
Description
Flammability has been recognized as an increasingly important social and scientific problem. Fire statistics in the United States (Report on the National Commission on Fire Prevention and Control, "America Burning," 1973) emphasized the vast devastation to life and property-12,000 lives lost annually due to fire and these deaths are usually caused by inhaling smoke or toxic gases; 300,000 fire injuries; 11. 4 billion dollars in fire cost of which 2. 7 billion dollars is related to property loss; a billion dollars to burn injury treatment; and 3. 3 billion dollars in productivity loss. It is obvious that much human and economic misery can be attributed to fire situations. In relation to this, polymer flammability has been recognized as an increasingly important social and scientific problem. The development of flame-retardant polymeric materials is a current example where the initiative for major scientific and technological developments is motivated by sociological pressure and legisla- tion. This is part of the important trend toward a safer environment and sets a pattern for future example.
Flame retardancy deals with our basic everyday life situations-housing, work areas, transportation, clothing and so forth- the "macroenvironment" capsule within which "homosapiens" live. As a result, flame-retardant polymers are now emerging as a specific class of materials leading to new and diversified scientific and technological ventures.
Table of Contents
1 The Flame Retardation of Polyolefins.- 1. Introduction.- 2. Flame Retardancy Tests.- 3. Polypropylene.- 4. Polypropylene Copolymers.- 5. Low-Density Polyethylene (LDPE).- 6. High-Density Polyethylene.- 7. Cross-Linked Polyethylene.- 8. Ionomers.- 9. Polybutylene.- 10. Ethylene-Propylene-Dimer Rubber.- 11. Ethylene-Propylene-Dimer (EPDM) Rubber Wire and Cable Insulation.- 12. References.- 2 Methods for Reduction of Smoke from Burning Polymers.- 1. Introduction.- 2. Smoke.- 2.1. Phenomenon.- 2.2. Smoke Measurement.- 2.3. Factors Affecting Measured Smoke Values.- 3. Smoke Inhibition Technology.- 3.1. Background.- 3.2. Smoke Inhibition in Polymers.- 4. Summary and Conclusions.- 5. References.- 3 Experimental Evaluation of Flammability Parameters of Polymeric Materials.- Abstract.- Objectives.- 1. Introduction.- 2. Experimental Procedures.- 2.1. Sample and Sample Container.- 2.2. Total Flow Rate of Mixture of Air-O2-N2 and Mass Fraction of Oxygen.- 2.3. External Heat Flux.- 2.4. Ignition.- 2.5. Mass Loss Rate.- 2.6. Total Mass Flow Rate of Mixture of Products and Air.- 2.7. Convective Heat Release Rate.- 2.8. Mass Generation Rates of Gaseous Pyrolysis-Combustion Products.- 2.9. Mass Generation Rate of the Pyrolyzate Fraction Collected on a Filter Paper.- 2.10. Optical Transmission Through the Mixture of Pyrolysis-Combustion Products and Air.- 3. Ignition.- 3.1. Concept.- 3.2. Measurements and Calculations.- 3.3. Data for Ignition Parameters.- 3.4. Conclusion.- 4. Mass Loss Rate in the Pyrolysis and Combustion of Polymers.- 4.1. Pyrolysis.- 4.2. Combustion.- 4.3. Conclusions.- 5. Mass Generation (or Depletion) Rates of Products.- 5.1. Concept.- 5.2. Measurements and Calculations.- 5.3. Data for the Distribution of Carbon in the Combustion Products.- 5.4. Conclusions.- 6. Heat Release Rate.- 6.1. Concept.- 6.2. Measurements and Calculations.- 6.3. Data for the Heat Release Rate Fractions.- 6.4. Conclusions.- 7. Optical Transmission Through the Mixture of Pyrolysis-Combustion Products and Air.- 7.1. Concept.- 7.2. Measurements and Calculations.- 7.3. Data for Modified Mass Absorbancy Index of "Pyrolyzate".- 7.4. Conclusions.- 8. Generation of Toxic Compounds.- 8.1 Concept.- 9. Fire Extinction.- 9.1 Concept.- 10. Nomenclature.- 11. List of Components for Experimental Apparatus.- 12. References.- 4 Flammability Evaluation Methods for Textiles.- 1. Introduction.- 2. Evaluation Methods for Fabrics Which Are Expected to Self-Extinguish.- 2.1. Vertical Tests.- 2.2. Horizontal Tests.- 3. Standards for Both Self-Extinguishing and Flammable Fabrics.- 4. Test Methods for Flammable Fabrics.- 4.1. Flame Spread Rate Tests.- 5. Ignition Time Tests.- 6. Heat Evolution Measurements.- 7. Extinguishability.- 8. Effect of Laundering, Soiling, and Weathering on Flammability.- 9. OI and Other Research Methods.- 10. Evaluation Methods for Specific End-Use Items.- 10.1. Blankets.- 10.2. Carpets.- 10.3. Curtains and Draperies.- 10.4. Mattresses.- 10.5. Upholstered Furniture.- 10.6. Protective Clothing.- 11. Thermal Behavior of Textile Materials.- 12. References.- 5 The Analysis of Polymers and Polymer Degradation Products by Mass Spectrometry.- 1. Introduction.- 2. Direct Analysis of Polymers.- 3. Analysis of Polymer Degradation Products.- 3.1. Thermal Degradation.- 3.2. Dielectric Breakdown.- 3.3. Mechanical Stress-Induced Degradation.- 3.4. Photolytic Degradation.- 4. Conclusion.- 5. References.
by "Nielsen BookData"