The physics of glassy polymers

書誌事項

The physics of glassy polymers

edited by R. N. Haward

(Materials science series / advisory editors, Leslie Holliday, A. Kelly)

Applied Science Publishers, c1973

  • : pbk

大学図書館所蔵 件 / 24

この図書・雑誌をさがす

注記

Includes bibliographical references and index

内容説明・目次

巻冊次

ISBN 9780853345657

内容説明

This work sets out to provide an up-to-date account of the physical properties and structure of polymers in the glassy state. Properties measured above the glass transition temperature are therefore included only in so far as is necessary for the treatment of the glass transition process. This approach to the subject therefore excludes any detailed account of rubber elasticity or melt rheology or of the structure and conformation of the long chain molecule in solution, although knowledge derived from this field is assumed where required. Major emphasis is placed on structural and mechanical properties, although a number of other physical properties are included. Naturally the different authors contributing to the book write mainly from their own particular points of view and where there are several widely accepted theoretical approaches to a subject, these are sometimes provided in different chapters which will necessarily overlap to a significant extent. For example, the main theoretical presentation on the subject of glass transition is given in Chapter 1. This is supplemented by accounts of the free volume theory in Chapter 3 and in the Introduction, and a short account of the work of Gibbs and DiMarzio, also in Chapter 3. Similarly, there is material on solvent cracking in Chapters 7 and 9, though the two workers approach the subject from opposite directions. Every effort has therefore been made to encourage cross-referencing between different chapters.

目次

(The Nature of Polymer Glasses, Their Packing Density and Mechanical Behaviour).- The Nature of Polymeric Glasses.- The common glassy polymers.- The softening of polymer glasses.- Polymer melts and rubbers.- The crystallisation of polymers.- Amorphous isotactic polymers.- The morphology of amorphous polymers.- Packing Volume in the Glassy State.- The expansion volume of amorphous polymers.- Free volume concepts derived from viscosity theories.- Viscosity and free volume in polymers.- Geometrical factors affecting the possible value of the free volume at Tg.- Bernal's random close packed volume.- The Rigidity of Polymer Glasses.- Large Deformations and Fracture.- References.- 1 The Thermodynamics of the Glassy State.- 1.1 Introductory Thermodynamic Considerations.- 1.2 Glassy Solidification and Transition Phenomena.- 1.2.1 General considerations and transitions of different order.- 1.2.2 Glassy solidification with one or several internal parameters.- 1.2.3 Experimental results.- 1.2.4 Position of the equilibrium curve below the glass temperature.- 1.2.5 Zero point volume of a polymer.- 1.3 Results of the Thermodynamic Theory of Linear Relaxation Phenomena.- 1.4 Glassy Mixed Phases.- 1.4.1 The glassy solidification of polymer solutions.- 1.4.2 The glassy solidification of cross-linked systems. The coexistence of glassy phases with phases in internal equilibrium.- 1.5 The Mobility and Structure of Glassy Phases.- References.- 2 X-Ray Diffraction Studies of the Structure of Amorphous Polymers.- 2.1 Introduction.- 2.2 The Interaction of X-rays With Matter.- 2.2.1 Scattering by a free electron.- 2.2.2 Interference among scattered waves.- 2.2.3 Atomic scattering factor.- 2.2.4 Compton scattering.- 2.3 Order and Orientation in Polymers.- 2.3.1 Order.- 2.3.2 Orientation.- 2.4 Diffraction of X-rays by Amorphous Materials.- 2.5 Small Angle X-ray Scattering.- 2.5.1 Introduction.- 2.5.2 Experimental requirements for SAXS.- 2.5.3 Outline of the theory of SAXS.- 2.5.4 Some applications of SAXS.- 2.6 The Radial Distribution Function for Amorphous Polymers.- References.- 3 Relaxation Processes in Amorphous Polymers.- 3.1 Introduction.- 3.2 Molecular Motion in Polymeric Melts and Glasses.- 3.2.1 General description of relaxational processes.- 3.2.2 Relaxational processes at the crystal melt temperature.- 3.2.3 Relaxations in the amorphous state above Tg and below Tm.- 3.2.4 Relaxational processes at the glass transition.- 3.2.5 Relaxations in the glassy state.- 3.3 Secondary Relaxation Regions in Typical Organic Glasses.- 3.3.1 Secondary relaxation regions in Polyvinylchloride.- 3.3.2 Secondary relaxation regions in polystyrene.- 3.3.3 Secondary relaxations in polymethylmethacrylate.- References.- 4 Creep in Glassy Polymers.- 4.1 Introduction.- 4.2 Phenomenological Theory of Creep.- 4.2.1 Linear theory.- 4.2.2 Nonlinear theory-creep equations.- 4.2.3 Nonlinear theory-superposition rules.- 4.3 Apparatus and Experimental Methods.- 4.3.1 General principles.- 4.3.2 Special experimental requirements.- 4.3.3 Special experiments.- 4.4 Creep Phenomena in Glassy Polymers.- 4.4.1 Typical creep behaviour.- 4.4.2 Creep at elevated temperatures.- 4.4.3 Creep in anisotropic samples.- 4.4.4 Recovery behaviour.- 4.4.5 Creep under intermittent stress.- 4.4.6 Creep under abrupt changes of stress.- 4.5 Final Comments.- References and Bibliography.- 5 The Yield Behaviour of Glassy Polymers.- 5.1 Introduction.- 5.2 Exact Definitions.- 5.2.1 Stress.- 5.2.2 Strain.- 5.2.3 The deformation-rate tensor.- 5.2.4 The yield point.- 5.2.5 Nomenclature for deformation processes.- 5.3 Mechanical Tests.- 5.3.1 The tensile test.- 5.3.2 The uniaxial compression test.- 5.3.3 The plane strain compression test.- 5.3.4 Tests in simple shear.- 5.3.5 Machine elasticity.- 5.3.6 Drawing at constant load.- 5.4 Characteristics of the Yield Process.- 5.4.1 The yield point and the yield stress.- 5.4.2 The yield strain.- 5.4.3 Strain softening and orientation hardening.- 5.4.4 The strain-rate dependence of the yield stress.- 5.4.5 The temperature dependence of the yield stress and the yield strain.- 5.4.6 The effect of hydrostatic pressure on the yield stress and yield strain.- 5.4.7 The effect of polymer structure on the yield stress.- 5.4.8 Volume changes at yield.- 5.4.9 The Bauschinger effect.- 5.5 Inhomogeneous Deformation.- 5.5.1 The reasons for inhomogeneous deformation.- 5.5.2 The principle of maximum plastic resistance.- 5.5.3 The geometry of inhomogeneous deformation.- 5.5.4 Strain inhomogeneities in polymers.- 5.6 Structural Observations.- 5.6.1 Birefringence.- 5.6.2 Electron microscopy.- 5.7 Yield Criteria for Polymers.- 5.7.1 The Tresca yield criterion.- 5.7.2 The von Mises yield criterion.- 5.7.3 The Mohr-Coulomb yield criterion.- 5.7.4 The modified Tresca criterion.- 5.7.5 The modified von Mises criterion.- 5.7.6 Choice of a yield criterion for polymers.- 5.8 Molecular Theories of Yielding.- 5.8.1 Reduction of the Tg by the applied stress.- 5.8.2 Stress-induced increase in free volume.- 5.8.3 Break-down of entanglements under stress.- 5.8.4 The Eyring model.- 5.8.5 The Robertson model.- 5.8.6 The theoretical shear strength-Frank's modification of the Frenkel model.- 5.8.7 Disclinations.- References.- 6 The Post-Yield Behaviour of Amorphous Plastics.- 6.1 General.- 6.2 The Phenomena of' strain Softening'superposition rules.- 4.3 Apparatus and Experimental Methods.- 4.3.1 General principles.- 4.3.2 Special experimental requirements.- 4.3.3 Special experiments.- 4.4 Creep Phenomena in Glassy Polymers.- 4.4.1 Typical creep behaviour.- 4.4.2 Creep at elevated temperatures.- 4.4.3 Creep in anisotropic samples.- 4.4.4 Recovery behaviour.- 4.4.5 Creep under intermittent stress.- 4.4.6 Creep under abrupt changes of stress.- 4.5 Final Comments.- References and Bibliography.- 5 The Yield Behaviour of Glassy Polymers.- 5.1 Introduction.- 5.2 Exact Definitions.- 5.2.1 Stress.- 5.2.2 Strain.- 5.2.3 The deformation-rate tensor.- 5.2.4 The yield point.- 5.2.5 Nomenclature for deformation processes.- 5.3 Mechanical Tests.- 5.3.1 The tensile test.- 5.3.2 The uniaxial compression test.- 5.3.3 The plane strain compression test.- 5.3.4 Tests in simple shear.- 5.3.5 Machine elasticity.- 5.3.6 Drawing at constant load.- 5.4 Characteristics of the Yield Process.- 5.4.1 The yield point and the yield stress.- 5.4.2 The yield strain.- 5.4.3 Strain softening and orientation hardening.- 5.4.4 The strain-rate dependence of the yield stress.- 5.4.5 The temperature dependence of the yield stress and the yield strain.- 5.4.6 The effect of hydrostatic pressure on the yield stress and yield strain.- 5.4.7 The effect of polymer structure on the yield stress.- 5.4.8 Volume changes at yield.- 5.4.9 The Bauschinger effect.- 5.5 Inhomogeneous Deformation.- 5.5.1 The reasons for inhomogeneous deformation.- 5.5.2 The principle of maximum plastic resistance.- 5.5.3 The geometry of inhomogeneous deformation.- 5.5.4 Strain inhomogeneities in polymers.- 5.6 Structural Observations.- 5.6.1 Birefringence.- 5.6.2 Electron microscopy.- 5.7 Yield Criteria for Polymers.- 5.7.1 The Tresca yield criterion.- 5.7.2 The von Mises yield criterion.- 5.7.3 The Mohr-Coulomb yield criterion.- 5.7.4 The modified Tresca criterion.- 5.7.5 The modified von Mises criterion.- 5.7.6 Choice of a yield criterion for polymers.- 5.8 Molecular Theories of Yielding.- 5.8.1 Reduction of the Tg by the applied stress.- 5.8.2 Stress-induced increase in free volume.- 5.8.3 Break-down of entanglements under stress.- 5.8.4 The Eyring model.- 5.8.5 The Robertson model.- 5.8.6 The theoretical shear strength-Frank's modification of the Frenkel model.- 5.8.7 Disclinations.- References.- 6 The Post-Yield Behaviour of Amorphous Plastics.- 6.1 General.- 6.2 The Phenomena of' strain Softening's random close packed volume.- The Rigidity of Polymer Glasses.- Large Deformations and Fracture.- References.- 1 The Thermodynamics of the Glassy State.- 1.1 Introductory Thermodynamic Considerations.- 1.2 Glassy Solidification and Transition Phenomena.- 1.2.1 General considerations and transitions of different order.- 1.2.2 Glassy solidification with one or several internal parameters.- 1.2.3 Experimental results.- 1.2.4 Position of the equilibrium curve below the glass temperature.- 1.2.5 Zero point volume of a polymer.- 1.3 Results of the Thermodynamic Theory of Linear Relaxation Phenomena.- 1.4 Glassy Mixed Phases.- 1.4.1 The glassy solidification of polymer solutions.- 1.4.2 The glassy solidification of cross-linked systems. The coexistence of glassy phases with phases in internal equilibrium.- 1.5 The Mobility and Structure of Glassy Phases.- References.- 2 X-Ray Diffraction Studies of the Structure of Amorphous Polymers.- 2.1 Introduction.- 2.2 The Interaction of X-rays With Matter.- 2.2.1 Scattering by a free electron.- 2.2.2 Interference among scattered waves.- 2.2.3 Atomic scattering factor.- 2.2.4 Compton scattering.- 2.3 Order and Orientation in Polymers.- 2.3.1 Order.- 2.3.2 Orientation.- 2.4 Diffraction of X-rays by Amorphous Materials.- 2.5 Small Angle X-ray Scattering.- 2.5.1 Introduction.- 2.5.2 Experimental requirements for SAXS.- 2.5.3 Outline of the theory of SAXS.- 2.5.4 Some applications of SAXS.- 2.6 The Radial Distribution Function for Amorphous Polymers.- References.- 3 Relaxation Processes in Amorphous Polymers.- 3.1 Introduction.- 3.2 Molecular Motion in Polymeric Melts and Glasses.- 3.2.1 General description of relaxational processes.- 3.2.2 Relaxational processes at the crystal melt temperature.- 3.2.3 Relaxations in the amorphous state above Tg and below Tm.- 3.2.4 Relaxational processes at the glass transition.- 3.2.5 Relaxations in the glassy state.- 3.3 Secondary Relaxation Regions in Typical Organic Glasses.- 3.3.1 Secondary relaxation regions in Polyvinylchloride.- 3.3.2 Secondary relaxation regions in polystyrene.- 3.3.3 Secondary relaxations in polymethylmethacrylate.- References.- 4 Creep in Glassy Polymers.- 4.1 Introduction.- 4.2 Phenomenological Theory of Creep.- 4.2.1 Linear theory.- 4.2.2 Nonlinear theory-creep equations.- 4.2.3 Nonlinear theory-superposition rules.- 4.3 Apparatus and Experimental Methods.- 4.3.1 General principles.- 4.3.2 Special experimental requirements.- 4.3.3 Special experiments.- 4.4 Creep Phenomena in Glassy Polymers.- 4.4.1 Typical creep behaviour.- 4.4.2 Creep at elevated temperatures.- 4.4.3 Creep in anisotropic samples.- 4.4.4 Recovery behaviour.- 4.4.5 Creep under intermittent stress.- 4.4.6 Creep under abrupt changes of stress.- 4.5 Final Comments.- References and Bibliography.- 5 The Yield Behaviour of Glassy Polymers.- 5.1 Introduction.- 5.2 Exact Definitions.- 5.2.1 Stress.- 5.2.2 Strain.- 5.2.3 The deformation-rate tensor.- 5.2.4 The yield point.- 5.2.5 Nomenclature for deformation processes.- 5.3 Mechanical Tests.- 5.3.1 The tensile test.- 5.3.2 The uniaxial compression test.- 5.3.3 The plane strain compression test.- 5.3.4 Tests in simple shear.- 5.3.5 Machine elasticity.- 5.3.6 Drawing at constant load.- 5.4 Characteristics of the Yield Process.- 5.4.1 The yield point and the yield stress.- 5.4.2 The yield strain.- 5.4.3 Strain softening and orientation hardening.- 5.4.4 The strain-rate dependence of the yield stress.- 5.4.5 The temperature dependence of the yield stress and the yield strain.- 5.4.6 The effect of hydrostatic pressure on the yield stress and yield strain.- 5.4.7 The effect of polymer structure on the yield stress.- 5.4.8 Volume changes at yield.- 5.4.9 The Bauschinger effect.- 5.5 Inhomogeneous Deformation.- 5.5.1 The reasons for inhomogeneous deformation.- 5.5.2 The principle of maximum plastic resistance.- 5.5.3 The geometry of inhomogeneous deformation.- 5.5.4 Strain inhomogeneities in polymers.- 5.6 Structural Observations.- 5.6.1 Birefringence.- 5.6.2 Electron microscopy.- 5.7 Yield Criteria for Polymers.- 5.7.1 The Tresca yield criterion.- 5.7.2 The von Mises yield criterion.- 5.7.3 The Mohr-Coulomb yield criterion.- 5.7.4 The modified Tresca criterion.- 5.7.5 The modified von Mises criterion.- 5.7.6 Choice of a yield criterion for polymers.- 5.8 Molecular Theories of Yielding.- 5.8.1 Reduction of the Tg by the applied stress.- 5.8.2 Stress-induced increase in free volume.- 5.8.3 Break-down of entanglements under stress.- 5.8.4 The Eyring model.- 5.8.5 The Robertson model.- 5.8.6 The theoretical shear strength-Frank's modification of the Frenkel model.- 5.8.7 Disclinations.- References.- 6 The Post-Yield Behaviour of Amorphous Plastics.- 6.1 General.- 6.2 The Phenomena of' strain Softening'.- 6.2.1 Stress hardening.- 6.3 Plastic Instability Phenomena.- 6.3.1 Plastic instability in tension.- 6.3.2 Plastic instability in different stress fields.- 6.4 The Adiabatic Heating of Polymers Subject to Large Deformations.- 6.4.1 Reversible thermoelastic effect.- 6.4.2 Thermal effects in large plastic deformation.- 6.4.3 The experimental measurement of temperature changes during deformation.- 6.5 Orientation Hardening.- 6.5.1 Orientation hardening as a physical process.- 6.5.2 Factors affecting orientation hardening.- 6.5.3 A model for large polymer deformations.- 6.6 Large Deformation and Fracture.- 6.6.1 Crack propagation as a deformation process.- 6.6.2 Crazing as a plastic instability phenomenon.- 6.6.3 The growth of voids in a polymer glass.- 6.6.4 The nucleation of voids.- References.- 7 Cracking and Crazing in Polymeric Glasses.- 7.1 Introduction.- 7.2 Fracture Mechanics.- 7.2.1 Linear fracture mechanics.- 7.2.2 Measurements of KIC for glassy polymers.- 7.2.3 Crack-opening displacement.- 7.2.4 Energy balance approach.- 7.2.5 Measurements of surface work.- 7.2.6 Fracture stress.- 7.3 Fatigue Fracture.- 7.3.1 Fatigue failure by heat build-up.- 7.3.2 Fatigue crack propagation.- 7.4 Crazing.- 7.4.1 Crazing of glassy plastics in air.- 7.4.2 Environmental crazing.- 7.4.3 Theoretical aspects.- 7.5 Molecular Fracture.- 7.5.1 Kinetic theories of fracture.- 7.5.2 Experimental evidence for bond fracture.- 7.6 Conclusion.- References.- 8 Rubber ReinForced Thermoplastics.- 8.1 Introduction.- 8.2 Rubber Reinforced Glassy Polymers of Commercial Importance.- 8.2.1 Based on polystyrene.- 8.2.2 Based on styrene acrylonitrile copolymer (SAN).- 8.2.3 Based on Polyvinylchloride.- 8.3 Methods of Manufacture.- 8.3.1 Physical blending.- 8.3.2 Interpolymerisation process.- 8.3.3 Latex interpolymerisation.- 8.4 Incompatibility in Polymer Mixtures.- 8.5 Identification of Two Phase Rubber Reinforced Systems.- 8.6 Dispersed Phase Morphology.- 8.6.1 Toughened polystyrene.- 8.6.2 ABS copolymers.- 8.6.3 Polyvinylchloride.- 8.7 Optical Properties.- 8.7.1 Matching of the refractive index.- 8.7.2 Reduction in particle size.- 8.8 Mechanical Properties.- 8.8.1 Tensile properties.- 8.8.2 Dynamic mechanical properties.- 8.8.3 Impact properties.- 8.8.4 Structure-property relationships.- References.- 9 The Diffusion and Sorption of Gases and Vapours in Glassy Polymers.- 9.1 Introduction.- 9.2 Ideal and Non-ideal Sorption and Diffusion of Fixed Gases.- 9.2.1 Ideal diffusion and sorption of fixed gases.- 9.2.2 Non-ideal sorption and diffusion of fixed gases.- 9.3 The Effect of the Glass Transition on Gas and Vapour Diffusion in Polymers.- 9.4 Relaxation Controlled Transport and Related Crazing of Polymeric Glasses by Vapours.- 9.4.1 Introduction ..- 9.4.2 Relaxation controlled transport and solvent crazing.- 9.5 Some Effects of Crystallinity and Orientation on the Transport of Gases and Vapours in Glassy Polymers.- 9.5.1 Effect of crystallinity.- 9.5.2 The effect of orientation.- References.- 10 The Morphology of Regular Block Copolymers.- 10.1 Introduction.- 10.1.1 General.- 10.1.2 Microphase separation.- 10.2 Techniques Used for the Study of the Morphology of Block Copolymers.- 10.2.1 Low angle X-ray scattering.- 10.2.2 Electron microscopy.- 10.2.3 Other techniques.- 10.3 Variables Controlling the Morphology.- 10.3.1 Chemical variables.- 10.3.2 Physical variables.- 10.4 Studies with Specific Systems.- 10.4.1 Systems with liquid.- 10.4.2 The pure copolymers.- 10.5 Theories of the Morphology of Block Copolymers.- 10.5.1 Objectives.- 10.5.2 Principles of calculation.- 10.6 Implications of Theories and Comparison With Experiment.- 10.6.1 Influence of block molecular weight ratio.- 10.6.2 Effect of block molecular weights.- 10.6.3 Molecular orientation in the phases.- 10.6.4 Interfacial region.- 10.6.5 Effect of temperature on domain size.- 10.7 Mechanical Properties and Deformations.- 10.8 Crystallinity.- References.- Appendix I Glass Transition Temperatures and Expansion Coefficients for the Glass and Rubber States of some Typical Polymeric Glasses.- Appendix II Conversion Factors for SI Units.
巻冊次

: pbk ISBN 9789401023573

内容説明

This work sets out to provide an up-to-date account of the physical properties and structure of polymers in the glassy state. Properties measured above the glass transition temperature are therefore included only in so far as is necessary for the treatment of the glass transition process. This approach to the subject therefore excludes any detailed account of rubber elasticity or melt rheology or of the structure and conformation of the long chain molecule in solution, although knowledge derived from this field is assumed where required. Major emphasis is placed on structural and mechanical properties, although a number of other physical properties are included. Naturally the different authors contributing to the book write mainly from their own particular points of view and where there are several widely accepted theoretical approaches to a subject, these are sometimes provided in different chapters which will necessarily overlap to a significant extent. For example, the main theoretical presentation on the subject of glass transition is given in Chapter 1. This is supplemented by accounts of the free volume theory in Chapter 3 and in the Introduction, and a short account of the work of Gibbs and DiMarzio, also in Chapter 3. Similarly, there is material on solvent cracking in Chapters 7 and 9, though the two workers approach the subject from opposite directions. Every effort has therefore been made to encourage cross-referencing between different chapters.

目次

(The Nature of Polymer Glasses, Their Packing Density and Mechanical Behaviour).- The Nature of Polymeric Glasses.- The common glassy polymers.- The softening of polymer glasses.- Polymer melts and rubbers.- The crystallisation of polymers.- Amorphous isotactic polymers.- The morphology of amorphous polymers.- Packing Volume in the Glassy State.- The expansion volume of amorphous polymers.- Free volume concepts derived from viscosity theories.- Viscosity and free volume in polymers.- Geometrical factors affecting the possible value of the free volume at Tg.- Bernal's random close packed volume.- The Rigidity of Polymer Glasses.- Large Deformations and Fracture.- References.- 1 The Thermodynamics of the Glassy State.- 1.1 Introductory Thermodynamic Considerations.- 1.2 Glassy Solidification and Transition Phenomena.- 1.2.1 General considerations and transitions of different order.- 1.2.2 Glassy solidification with one or several internal parameters.- 1.2.3 Experimental results.- 1.2.4 Position of the equilibrium curve below the glass temperature.- 1.2.5 Zero point volume of a polymer.- 1.3 Results of the Thermodynamic Theory of Linear Relaxation Phenomena.- 1.4 Glassy Mixed Phases.- 1.4.1 The glassy solidification of polymer solutions.- 1.4.2 The glassy solidification of cross-linked systems. The coexistence of glassy phases with phases in internal equilibrium.- 1.5 The Mobility and Structure of Glassy Phases.- References.- 2 X-Ray Diffraction Studies of the Structure of Amorphous Polymers.- 2.1 Introduction.- 2.2 The Interaction of X-rays With Matter.- 2.2.1 Scattering by a free electron.- 2.2.2 Interference among scattered waves.- 2.2.3 Atomic scattering factor.- 2.2.4 Compton scattering.- 2.3 Order and Orientation in Polymers.- 2.3.1 Order.- 2.3.2 Orientation.- 2.4 Diffraction of X-rays by Amorphous Materials.- 2.5 Small Angle X-ray Scattering.- 2.5.1 Introduction.- 2.5.2 Experimental requirements for SAXS.- 2.5.3 Outline of the theory of SAXS.- 2.5.4 Some applications of SAXS.- 2.6 The Radial Distribution Function for Amorphous Polymers.- References.- 3 Relaxation Processes in Amorphous Polymers.- 3.1 Introduction.- 3.2 Molecular Motion in Polymeric Melts and Glasses.- 3.2.1 General description of relaxational processes.- 3.2.2 Relaxational processes at the crystal melt temperature.- 3.2.3 Relaxations in the amorphous state above Tg and below Tm.- 3.2.4 Relaxational processes at the glass transition.- 3.2.5 Relaxations in the glassy state.- 3.3 Secondary Relaxation Regions in Typical Organic Glasses.- 3.3.1 Secondary relaxation regions in Polyvinylchloride.- 3.3.2 Secondary relaxation regions in polystyrene.- 3.3.3 Secondary relaxations in polymethylmethacrylate.- References.- 4 Creep in Glassy Polymers.- 4.1 Introduction.- 4.2 Phenomenological Theory of Creep.- 4.2.1 Linear theory.- 4.2.2 Nonlinear theory-creep equations.- 4.2.3 Nonlinear theory-superposition rules.- 4.3 Apparatus and Experimental Methods.- 4.3.1 General principles.- 4.3.2 Special experimental requirements.- 4.3.3 Special experiments.- 4.4 Creep Phenomena in Glassy Polymers.- 4.4.1 Typical creep behaviour.- 4.4.2 Creep at elevated temperatures.- 4.4.3 Creep in anisotropic samples.- 4.4.4 Recovery behaviour.- 4.4.5 Creep under intermittent stress.- 4.4.6 Creep under abrupt changes of stress.- 4.5 Final Comments.- References and Bibliography.- 5 The Yield Behaviour of Glassy Polymers.- 5.1 Introduction.- 5.2 Exact Definitions.- 5.2.1 Stress.- 5.2.2 Strain.- 5.2.3 The deformation-rate tensor.- 5.2.4 The yield point.- 5.2.5 Nomenclature for deformation processes.- 5.3 Mechanical Tests.- 5.3.1 The tensile test.- 5.3.2 The uniaxial compression test.- 5.3.3 The plane strain compression test.- 5.3.4 Tests in simple shear.- 5.3.5 Machine elasticity.- 5.3.6 Drawing at constant load.- 5.4 Characteristics of the Yield Process.- 5.4.1 The yield point and the yield stress.- 5.4.2 The yield strain.- 5.4.3 Strain softening and orientation hardening.- 5.4.4 The strain-rate dependence of the yield stress.- 5.4.5 The temperature dependence of the yield stress and the yield strain.- 5.4.6 The effect of hydrostatic pressure on the yield stress and yield strain.- 5.4.7 The effect of polymer structure on the yield stress.- 5.4.8 Volume changes at yield.- 5.4.9 The Bauschinger effect.- 5.5 Inhomogeneous Deformation.- 5.5.1 The reasons for inhomogeneous deformation.- 5.5.2 The principle of maximum plastic resistance.- 5.5.3 The geometry of inhomogeneous deformation.- 5.5.4 Strain inhomogeneities in polymers.- 5.6 Structural Observations.- 5.6.1 Birefringence.- 5.6.2 Electron microscopy.- 5.7 Yield Criteria for Polymers.- 5.7.1 The Tresca yield criterion.- 5.7.2 The von Mises yield criterion.- 5.7.3 The Mohr-Coulomb yield criterion.- 5.7.4 The modified Tresca criterion.- 5.7.5 The modified von Mises criterion.- 5.7.6 Choice of a yield criterion for polymers.- 5.8 Molecular Theories of Yielding.- 5.8.1 Reduction of the Tg by the applied stress.- 5.8.2 Stress-induced increase in free volume.- 5.8.3 Break-down of entanglements under stress.- 5.8.4 The Eyring model.- 5.8.5 The Robertson model.- 5.8.6 The theoretical shear strength-Frank's modification of the Frenkel model.- 5.8.7 Disclinations.- References.- 6 The Post-Yield Behaviour of Amorphous Plastics.- 6.1 General.- 6.2 The Phenomena of' strain Softening'.- 6.2.1 Stress hardening.- 6.3 Plastic Instability Phenomena.- 6.3.1 Plastic instability in tension.- 6.3.2 Plastic instability in different stress fields.- 6.4 The Adiabatic Heating of Polymers Subject to Large Deformations.- 6.4.1 Reversible thermoelastic effect.- 6.4.2 Thermal effects in large plastic deformation.- 6.4.3 The experimental measurement of temperature changes during deformation.- 6.5 Orientation Hardening.- 6.5.1 Orientation hardening as a physical process.- 6.5.2 Factors affecting orientation hardening.- 6.5.3 A model for large polymer deformations.- 6.6 Large Deformation and Fracture.- 6.6.1 Crack propagation as a deformation process.- 6.6.2 Crazing as a plastic instability phenomenon.- 6.6.3 The growth of voids in a polymer glass.- 6.6.4 The nucleation of voids.- References.- 7 Cracking and Crazing in Polymeric Glasses.- 7.1 Introduction.- 7.2 Fracture Mechanics.- 7.2.1 Linear fracture mechanics.- 7.2.2 Measurements of KIC for glassy polymers.- 7.2.3 Crack-opening displacement.- 7.2.4 Energy balance approach.- 7.2.5 Measurements of surface work.- 7.2.6 Fracture stress.- 7.3 Fatigue Fracture.- 7.3.1 Fatigue failure by heat build-up.- 7.3.2 Fatigue crack propagation.- 7.4 Crazing.- 7.4.1 Crazing of glassy plastics in air.- 7.4.2 Environmental crazing.- 7.4.3 Theoretical aspects.- 7.5 Molecular Fracture.- 7.5.1 Kinetic theories of fracture.- 7.5.2 Experimental evidence for bond fracture.- 7.6 Conclusion.- References.- 8 Rubber ReinForced Thermoplastics.- 8.1 Introduction.- 8.2 Rubber Reinforced Glassy Polymers of Commercial Importance.- 8.2.1 Based on polystyrene.- 8.2.2 Based on styrene acrylonitrile copolymer (SAN).- 8.2.3 Based on Polyvinylchloride.- 8.3 Methods of Manufacture.- 8.3.1 Physical blending.- 8.3.2 Interpolymerisation process.- 8.3.3 Latex interpolymerisation.- 8.4 Incompatibility in Polymer Mixtures.- 8.5 Identification of Two Phase Rubber Reinforced Systems.- 8.6 Dispersed Phase Morphology.- 8.6.1 Toughened polystyrene.- 8.6.2 ABS copolymers.- 8.6.3 Polyvinylchloride.- 8.7 Optical Properties.- 8.7.1 Matching of the refractive index.- 8.7.2 Reduction in particle size.- 8.8 Mechanical Properties.- 8.8.1 Tensile properties.- 8.8.2 Dynamic mechanical properties.- 8.8.3 Impact properties.- 8.8.4 Structure-property relationships.- References.- 9 The Diffusion and Sorption of Gases and Vapours in Glassy Polymers.- 9.1 Introduction.- 9.2 Ideal and Non-ideal Sorption and Diffusion of Fixed Gases.- 9.2.1 Ideal diffusion and sorption of fixed gases.- 9.2.2 Non-ideal sorption and diffusion of fixed gases.- 9.3 The Effect of the Glass Transition on Gas and Vapour Diffusion in Polymers.- 9.4 Relaxation Controlled Transport and Related Crazing of Polymeric Glasses by Vapours.- 9.4.1 Introduction ..- 9.4.2 Relaxation controlled transport and solvent crazing.- 9.5 Some Effects of Crystallinity and Orientation on the Transport of Gases and Vapours in Glassy Polymers.- 9.5.1 Effect of crystallinity.- 9.5.2 The effect of orientation.- References.- 10 The Morphology of Regular Block Copolymers.- 10.1 Introduction.- 10.1.1 General.- 10.1.2 Microphase separation.- 10.2 Techniques Used for the Study of the Morphology of Block Copolymers.- 10.2.1 Low angle X-ray scattering.- 10.2.2 Electron microscopy.- 10.2.3 Other techniques.- 10.3 Variables Controlling the Morphology.- 10.3.1 Chemical variables.- 10.3.2 Physical variables.- 10.4 Studies with Specific Systems.- 10.4.1 Systems with liquid.- 10.4.2 The pure copolymers.- 10.5 Theories of the Morphology of Block Copolymers.- 10.5.1 Objectives.- 10.5.2 Principles of calculation.- 10.6 Implications of Theories and Comparison With Experiment.- 10.6.1 Influence of block molecular weight ratio.- 10.6.2 Effect of block molecular weights.- 10.6.3 Molecular orientation in the phases.- 10.6.4 Interfacial region.- 10.6.5 Effect of temperature on domain size.- 10.7 Mechanical Properties and Deformations.- 10.8 Crystallinity.- References.- Appendix I Glass Transition Temperatures and Expansion Coefficients for the Glass and Rubber States of some Typical Polymeric Glasses.- Appendix II Conversion Factors for SI Units.

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示

詳細情報

ページトップへ