Ondes de gradients multidimensionnelles

Bibliographic Information

Ondes de gradients multidimensionnelles

Monique Sablé-Tougeron

(Memoirs of the American Mathematical Society, no. 511)

American Mathematical Society, 1993

Available at  / 16 libraries

Search this Book/Journal

Note

"November 1993, volume 106, number 511 (end of volume)"--T.p

Includes bibliographical references (p. 92-93)

Description and Table of Contents

Description

Recent techniques in partial differential equations have led to a solution to the general multidimensional Cauchy problem for nonlinear gradient waves. In a blown-up configuration, Sable-Tougeron constructs a local solution for a quasilinear hyperbolic system with continuous Cauchy data, in which the first derivatives are discontinuous on a hyper surface. This strong singularity is not so problematic as a rarefaction: The use of Alinhac's para-unknown leads to a tame inequality without loss of derivatives for the iterative scheme.

Table of Contents

Formulation du probleme, enonce du resultat L'inegalite Espaces et calcul paradifferentiel adaptes L'inegalite tame: premiere etape, paralinearisation L'inegalite tame, inegalites conormales du modele paradifferentiel Linegalite tame fermee Les estimations Les equations eiconales Le probleme non lineaire Appendice Bibliographie.

by "Nielsen BookData"

Related Books: 1-1 of 1

Details

Page Top