Artificial intelligence in real-time control 1992 : selected papers from the IFAC/IFIP/IMACS symposium, Delft, the Netherlands, 16-18 June 1992
著者
書誌事項
Artificial intelligence in real-time control 1992 : selected papers from the IFAC/IFIP/IMACS symposium, Delft, the Netherlands, 16-18 June 1992
(IFAC symposia series, 1993,
Published for the International Federation of Automatic Control by Pergamon Press, 1993
1st ed
大学図書館所蔵 全1件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
"IFAC Symposium on Artificial Intelligence in Real-Time Control 1992"--T.p. verso
Includes index
内容説明・目次
内容説明
The symposium had two main aims, to investigate the state-of-the-art in the application of artificial intelligence techniques in real-time control, and to bring together control system specialists, artificial intelligence specialists and end-users. Many professional engineers working in industry feel that the gap between theory and practice in applying control and systems theory is widening, despite efforts to develop control algorithms. Papers presented at the meeting ranged from the theoretical aspects to the practical applications of artificial intelligence in real-time control. Themes were: the methodology of artificial intelligence techniques in control engineering; the application of artificial intelligence techniques in different areas of control; and hardware and software requirements. This symposium showed that there exist alternative possibilities for control based on artificial intelligence techniques.
目次
Section headings and selected papers: Plenary Papers. Knowledge based control: selecting the right tool for the job (R. Leitch). The Methodology of Artificial Intelligence Techniques in Control Systems. Neural Net Control. Neural networks applied to optimal flight control (T. McKelvey). The influence of training data selection on performance of neural networks for control of non-linear systems (A.B. Bendtsen, N. Jensen). Knowledge-Based Control. Induction of control rules from human skill (K.J. Hunt, Y.M. Han). Dimensions of learning in a real-time knowledge-based control system (N.V. Findler). Fuzzy Control. Fuzzy inference in rule-based real-time control (R. Jager et al.). Monitoring and Fault Diagnosis. Supervisory control of mode-switch processes: application to a flexible beam (R.A. Hilhorst et al.). Supervision and control of an exothermic batch process (R. Perne). Genetic Algorithms and Learning. An adaptive system for process control using genetic algorithms (C.L. Karr). Qualitative Reasoning. On representations for continuous dynamic systems (E.A. Woods). The Application of Artificial Intelligence Techniques in Different Areas of Control. Process Control. Real-time supervisory control for industrial processes (D.A. Linkens, M.F. Abbod). Biotechnology. Pattern recognition for bioprocess control (B. Sonnleitner, G. Locher). Hardware and Software Requirements. Temporal Reasoning. A temporal blackboard structure for process control (F. Barber et al.). New Paradigms for Real-Time Control. Reinforcement learning and recruitment mechanism for adaptive distributed control (H. Bersini). Real-Time Environments for Intelligent Control. DICE: a real-time toolbox (A.J. Krijgsman, R. Jager). Development of Real-Time AI Systems. An execution environment for real-time model-based supervisory control and diagnostic systems (Z. Papp et al.). Author index. Keyword index.
Numerous illus., 4 half-tones.
「Nielsen BookData」 より