Different perspectives on wavelets : American Mathematical Society short course, January 11-12, 1993, San Antonio, Texas
著者
書誌事項
Different perspectives on wavelets : American Mathematical Society short course, January 11-12, 1993, San Antonio, Texas
(Proceedings of symposia in applied mathematics, v. 47 . AMS short course lecture notes)
American Mathematical Society, c1993
大学図書館所蔵 全38件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
"Lecture notes prepared for the American Mathematical Society Short Course, Wavelets and Applications" -- T.p. verso
Includes bibliographical references
内容説明・目次
内容説明
The wavelet transform can be seen as a synthesis of ideas that have emerged since the 1960s in mathematics, physics, and electrical engineering. The basic idea is to use a family of 'building blocks' to represent in an efficient way the object at hand, be it a function, an operator, a signal, or an image. The building blocks themselves come in different 'sizes' which can describe different features with different resolutions. The papers in this book attempt to give some theoretical and technical shape to this intuitive picture of wavelets and their uses. The papers collected here were prepared for an AMS Short Course on Wavelets and Applications, held at the Joint Mathematics Meetings in San Antonio in January 1993.Here readers will find general background on wavelets as well as more detailed views of specific techniques and applications. With contributions by some of the top experts in the field, this book provides an excellent introduction to this important and growing area of research.
目次
Wavelet transforms and orthonormal wavelet bases by I. Daubechies Wavelets and operators by Y. Meyer Projection operators in multiresolution analysis by P. G. Lemarie-Rieusset Wavelets and differential operators by P. Tchamitchian Wavelets and fast numerical algorithms by G. Beylkin Wavelets and adapted waveform analysis. A toolkit for signal processing and numerical analysis by R. R. Coifman and M. V. Wickerhauser Best-adapted wavelet packet bases by M. V. Wickerhauser Nonlinear wavelet methods for recovery of signals, densities, and spectra from indirect and noisy data by D. L. Donoho.
「Nielsen BookData」 より